Skip to main content

Advertisement

Log in

Carbon capture from stationary power generation sources: A review of the current status of the technologies

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The world will need greatly increased energy supply in the future for sustained economic growth, but the related CO2 emissions and the resulting climate changes are becoming major concerns. CO2 is one of the most important greenhouse gases that is said to be responsible for approximately 60% of the global warming. Along with improvement of energy efficiency and increased use of renewable energy sources, carbon capture and sequestration (CCS) is expected to play a major role in curbing the greenhouse gas emissions on a global scale. This article reviews the various options and technologies for CO2 capture, specifically for stationary power generation sources. Many options exist for carbon dioxide capture from such sources, which vary with power plant types, and include post-combustion capture, pre-combustion capture, oxy fuel combustion capture, and chemical looping combustion capture. Various carbon dioxide separation technologies can be utilized with these options, such as chemical absorption, physical absorption, adsorption, and membrane separation. Most of these capture technologies are still at early stages of development. Recent progress and remaining challenges for the various CO2 capture options and technologies are reviewed in terms of capacity, selectivity, stability, energy requirements, etc. Hybrid and modified systems hold huge future potentials, but significant progress is required in materials synthesis and stability, and implementations of these systems on demonstration plants are needed. Improvements and progress made through applications of process systems engineering concepts and tools are highlighted and current gaps in the knowledge are also mentioned. Finally, some recommendations are made for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Folger, Carbon capture: A technology assessment, Congressional Research Service Report, University of Nebraska — Lincoln (2010).

    Google Scholar 

  2. A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36(20), 4467 (2002).

    Article  CAS  Google Scholar 

  3. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskel and C. A. Johnson, Climate Change 2001: The scientific basis, Cambridge, UK (2001).

    Google Scholar 

  4. Energy Technology Perspectives 2008, Scenarios & Strategies to 2050, IEA (2008).

  5. IPCC special report on carbon dioxide capture and storage (2005).

  6. P. H.M. Feron and C.A. Hendriks, Oil. Gas Sci. Tech. — Rev. IFP, 60(3), 451 (2005).

    Article  Google Scholar 

  7. DOE/NETL carbon dioxide capture and storage RD&D roadmap, Proceedings of the Laurance Reid gas Conditioning Conference (2010).

  8. D. Aaron and C. Tsouris, Sep. Sci. Technol., 40(1–3), 321 (2005).

    Article  CAS  Google Scholar 

  9. M.M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 63(18), 4433 (2008).

    Article  CAS  Google Scholar 

  10. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland and I. Wright, J. Environ. Sci., 20(1), 14 (2008).

    Article  CAS  Google Scholar 

  11. M.R. Othman, Martunus, R. Zakaria and W. J. N. Fernando, Energy Pol., 37(5), 1718 (2009).

    Article  Google Scholar 

  12. S. I. Plasynski, J. T. Litynski, H.G. McIlvried and R. D. Srivastava, Crit. Rev. Plant Sci., 28(3), 123 (2009).

    Article  CAS  Google Scholar 

  13. A. A. Olajire, Energy, 35(6), 2610 (2010).

    Article  CAS  Google Scholar 

  14. E. S. Rubin, H. Mantripragada, A. Marks, P. Versteeg and J. Kitchin, Prog. Energy Combust. Sci., 38(5), 630 (2012).

    Article  CAS  Google Scholar 

  15. R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas and D. Gelowitz, Ind. Eng. Chem. Res., 45(8), 2414 (2005).

    Article  CAS  Google Scholar 

  16. S. Ma’mun, J. P. Jakobsen, H. F. Svendsen and O. Juliussen, Ind. Eng. Chem. Res., 45(8), 2505 (2005).

    Article  CAS  Google Scholar 

  17. N. Ramachandran, A. Aboudheir, R. Idem and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 45(8), 2608 (2006).

    Article  CAS  Google Scholar 

  18. X. Chen, F. Closmann and G. T. Rochelle, Energy Procedia, 4, 101 (2011).

    Article  CAS  Google Scholar 

  19. P. Galindo, A. Schäffer, K. Brechtel, S. Unterberger and G. Scheffknecht, Fuel, 101, 2 (2012).

    Article  CAS  Google Scholar 

  20. D. A. Glasscock, J. E. Critchfield and G. T. Rochelle, Chem. Eng. Sci., 46(11), 2829 (1991).

    Article  CAS  Google Scholar 

  21. G. Puxty, R. Rowland and M. Attalla, Chem. Eng. Sci., 65(2), 915 (2010).

    Article  CAS  Google Scholar 

  22. R.W. Bucklin and R. L. Schendel, Comparison of physical solvents used for gas processing, in acid and sour gas treating processes, S. A. Newman, Gulf Publishing Co., Houston, TX (1985).

    Google Scholar 

  23. R.W. Bucklin and R.L. Schendel, Energy Progress, 4(3), 137 (1984).

    CAS  Google Scholar 

  24. B. Barry and L. Lili, A comparison of physical solvents for acid gas removal, Bryan Research & Engineering, Inc., Bryan, Texas, U.S.A.

  25. M. L. Gray, Y. Soong, K. J. Champagne, H. Pennline, J. P. Baltrus, R.W. Stevens Jr., R. Khatri, S. S. C. Chuang and T. Filburn, Fuel Process. Technol., 86(14–15), 1449 (2005).

    Article  CAS  Google Scholar 

  26. G. P. Knowles, J.V. Graham, S.W. Delaney and A. L. Chaffee, Fuel Process. Technol., 86(14–15), 1435 (2005).

    Article  CAS  Google Scholar 

  27. G. P. Knowles, S.W. Delaney and A. L. Chaffee, Ind. Eng. Chem. Res., 45(8), 2626 (2006).

    Article  CAS  Google Scholar 

  28. X. Xu, C. Song, B.G. Miller and A.W. Scaroni, Fuel Process. Technol., 86(14–15), 1457 (2005).

    Article  CAS  Google Scholar 

  29. H. Y. Huang, R. T. Yang, D. Chinn and C. L. Munson, Ind. Eng. Chem. Res., 42(12), 2427 (2002).

    Article  CAS  Google Scholar 

  30. X. Xu, C. Song, J.M. Andresen, B.G. Miller and A.W. Scaroni, Energ. Fuel., 16(6), 1463 (2002).

    Article  CAS  Google Scholar 

  31. C. A. Grande and A. E. Rodrigues, Int. J. Greenhouse Gas Control, 2(2), 194 (2008).

    CAS  Google Scholar 

  32. N. Hedin, L. Andersson, L. Bergström and J. Yan, Appl. Energy, 104, 418 (2013).

    Article  CAS  Google Scholar 

  33. M. Ishibashi, K. Otake, S. Kanamori and A. Yasutake, Study on CO 2 removal technology from flue gas of thermal power plant by physical adsorption method, B. E. P. Riemer and A. Wokaun, Elsevier Science, Ltd., London (1999).

  34. N. Konduru, P. Lindner and N. M. Assaf-Anid, AIChE J., 53(12), 3137 (2007).

    Article  CAS  Google Scholar 

  35. J. Mérel, M. Clausse and F. Meunier, Environ. Prog., 25(4), 327 (2006).

    Article  CAS  Google Scholar 

  36. B.-K. Na, K.-K. Koo, H.-M. Eum, H. Lee and H. Song, Korean J. Chem. Eng., 18(2), 220 (2001).

    Article  CAS  Google Scholar 

  37. Y. Wang and M. D. LeVan, J. Chem. Eng. Data, 54(10), 2839 (2009).

    Article  CAS  Google Scholar 

  38. X. Xu, C. Song, J.M. Andrésen, B.G. Miller and A.W. Scaroni, Micropor. Mesopor. Mater., 62(1–2), 29 (2003).

    Article  CAS  Google Scholar 

  39. H. Yoshitake, T. Yokoi and T. Tatsumi, Chem. Mater., 14(11), 4603 (2002).

    Article  CAS  Google Scholar 

  40. C. E. Powell and G. G. Qiao, J. Membr. Sci., 279(1–2), 1 (2006).

    Article  CAS  Google Scholar 

  41. G. Illing, K. Hellgardt, R. J. Wakeman and A. Jungbauer, J. Membr. Sci., 184(1), 69 (2001).

    Article  CAS  Google Scholar 

  42. Z.-K. Xu, C. Dannenberg, J. Springer, S. Banerjee and G. Maier, J. Membr. Sci., 205(1–2), 23 (2002).

    Article  CAS  Google Scholar 

  43. B. Tantekin-Ersolmaz, Ç. Atalay-Oral, M. Tatlýer, A. Erdemenatalar, B. Schoeman and J. Sterte, J. Membr. Sci., 175(2), 285 (2000).

    Article  CAS  Google Scholar 

  44. S. Husain and W. J. Koros, J. Membr. Sci., 288(1–2), 195 (2007).

    Article  CAS  Google Scholar 

  45. D. Luebke, C. Myers and H. Pennline, Energy Fuels, 20(5), 1906 (2006).

    Article  CAS  Google Scholar 

  46. S. Li, Z. Wang, C. Zhang, M. Wang, F. Yuan, J. Wang and S. Wang, J. Membr. Sci., 436, 121 (2013).

    Article  CAS  Google Scholar 

  47. M. Nomura, T. Yamaguchi and S.-i. Nakao, Ind. Eng. Chem. Res., 36(10), 4217 (1997).

    Article  CAS  Google Scholar 

  48. V. Sebastián, I. Kumakiri, R. Bredesen and M. Menéndez, J. Membr. Sci., 292(1–2), 92 (2007).

    Article  CAS  Google Scholar 

  49. J. Zou and W. S.W. Ho, J. Membr. Sci., 286(1–2), 310 (2006).

    Article  CAS  Google Scholar 

  50. A. Wright, V. White, J. Hufton, E. v. Selow and P. Hinderink, Energy Procedia, 1(1), 707 (2009).

    Article  CAS  Google Scholar 

  51. P. Kolbitsch, T. Pröll, J. Bolhar-Nordenkampf and H. Hofbauer, Energy Procedia, 1(1), 1465 (2009).

    Article  CAS  Google Scholar 

  52. M. Rydén, A. Lyngfelt, T. Mattisson, D. Chen, A. Holmen and E. Bjørgum, Int. J. Greenhouse Gas Control, 2(1), 21 (2008).

    Article  CAS  Google Scholar 

  53. J. Ilconich, C. Myers, H. Pennline and D. Luebke, J. Membr. Sci., 298(1–2), 41 (2007).

    Article  CAS  Google Scholar 

  54. CO 2 capturing, IEA Greenhouse Gas R&D Programme (2007).

  55. H.R. Kim, D. Wang, L. Zeng, S. Bayham, A. Tong, E. Chung, M.V. Kathe, S. Luo, O. McGiveron, A. Wang, Z. Sun, D. Chen and L.-S. Fan, Fuel, 108, 370 (2013).

    Article  CAS  Google Scholar 

  56. D. P. Connell, D.A. Lewandowski, S. Ramkumar, N. Phalak, R.M. Statnick and L.-S. Fan, Fuel, 105, 383 (2013).

    Article  CAS  Google Scholar 

  57. W. Wang, S. Ramkumar, D. Wong and L.-S. Fan, Fuel, 92(1), 94 (2012).

    Article  CAS  Google Scholar 

  58. W. Wang, S. Ramkumar and L.-S. Fan, Fuel, 104, 561 (2013).

    Article  CAS  Google Scholar 

  59. H. J. Richter and K. Knoche, ACS Symposium series, 235, 71 (1983).

    Article  CAS  Google Scholar 

  60. M. Ishida and H. Jin, Energy, 19(4), 415 (1994).

    Article  CAS  Google Scholar 

  61. An assessment of carbon capture technology and research opportunities, GCEP Energy Assessment Analysis, Spring (2005).

  62. A. Lyngfelt, B. Kronberger, J. Adanez, J.X. Morin and P. Hurst, The grace project: Development of oxygen carrier particles for chemical-looping combustion. Design and operation of a 10 kW chemical-looping combustor,E. S. Rubin, et al., Elsevier Science Ltd., Oxford (2005).

    Google Scholar 

  63. S.Y. Chuang, J. S. Dennis, A. N. Hayhurst and S. A. Scott, Combust. Flame, 154(1–2), 109 (2008).

    Article  CAS  Google Scholar 

  64. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego and P. Gayán, Combust. Flame, 157(3), 602 (2010).

    Article  CAS  Google Scholar 

  65. A. Abad, T. Mattisson, A. Lyngfelt and M. Johansson, Fuel, 86(7–8), 1021 (2007).

    Article  CAS  Google Scholar 

  66. F. He, H. Wang and Y. Dai, J. Nat. Gas Chem., 16(2), 155 (2007).

    Article  CAS  Google Scholar 

  67. A. Abad, T. Mattisson, A. Lyngfelt and M. Rydén, Fuel, 85(9), 1174 (2006).

    Article  CAS  Google Scholar 

  68. P. Gayán, L. F. de Diego, F. García-Labiano, J. Adánez, A. Abad and C. Dueso, Fuel, 87(12), 2641 (2008).

    Article  CAS  Google Scholar 

  69. M. Ishida, M. Yamamoto and T. Ohba, Energy Convers. Manage., 43(9–12), 1469 (2002).

    Article  CAS  Google Scholar 

  70. L. Shen, M. Zheng, J. Xiao and R. Xiao, Combust. Flame, 154(3), 489 (2008).

    Article  CAS  Google Scholar 

  71. H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal and T. Mattisson, Chem. Eng. Res. Des., 86(9), 1017 (2008).

    Article  CAS  Google Scholar 

  72. H. E. Andrus, J. H. Chiu, P. R. Thibeault and A. Brautsch, Alstom’s calcium oxide chemical looping combustion coal power technology development, 34th International Technical Conference on Clean Coal & Fuel Systems, Florida, USA (2009).

    Google Scholar 

  73. J. Yu, A. B. Corripio, D. P. Harrison and R. J. Copeland, Adv. Environ. Res., 7(2), 335 (2003).

    Article  CAS  Google Scholar 

  74. B. Erlach, M. Schmidt and G. Tsatsaronis, Energy, 36(6), 3804 (2011).

    Article  CAS  Google Scholar 

  75. S. Ma’mum, H. F. Svendsen, K. A. Hoff and O. Juliussen, Selection of new absorbents for carbon dioxide capture, E. S. Rubin, et al., Elsevier Science Ltd., Oxford (2005).

  76. A. Bello and R. O. Idem, Ind. Eng. Chem. Res., 45(8), 2569 (2005).

    Article  CAS  Google Scholar 

  77. G. S. Goff and G. T. Rochelle, Ind. Eng. Chem. Res., 45(8), 2513 (2005).

    Article  CAS  Google Scholar 

  78. A. O. Lawal and R. O. Idem, Ind. Eng. Chem. Res., 45(8), 2601 (2006).

    Article  CAS  Google Scholar 

  79. T. Supap, R. Idem, P. Tontiwachwuthikul and C. Saiwan, Ind. Eng. Chem. Res., 45(8), 2437 (2005).

    Article  CAS  Google Scholar 

  80. J. Xiao, C.-W. Li and M.-H. Li, Chem. Eng. Sci., 55(1), 161 (2000).

    Article  CAS  Google Scholar 

  81. J.-Y. Park, S. J. Yoon and H. Lee, Environ. Sci. Technol., 37(8), 1670 (2003).

    Article  CAS  Google Scholar 

  82. E.B. Rinker, S. S. Ashour and O. C. Sandall, Ind. Eng. Chem. Res., 39(11), 4346 (2000).

    Article  CAS  Google Scholar 

  83. S. Ma, H. Song, M. Wang, J. Yang and B. Zang, Chem. Eng. Res. Des., 91(7), 1327 (2013).

    Article  CAS  Google Scholar 

  84. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Int. J. Greenhouse Gas Control, 2(1), 9 (2008).

    Article  CAS  Google Scholar 

  85. P.D. Jared P. Ciferno and Thomas Tarka, An economic scoping study for CO 2 capture using aqueous ammonia, US DOE/NETL, Pittsburgh, PA (2005).

    Google Scholar 

  86. Z. Niu, Y. Guo, Q. Zeng and W. Lin, Fuel Process. Technol., 108, 154 (2013).

    Article  CAS  Google Scholar 

  87. K. Han, C. K. Ahn, M. S. Lee, C. H. Rhee, J. Y. Kim and H. D. Chun, Int. J. Greenhouse Gas Control, 14, 270 (2013).

    Article  CAS  Google Scholar 

  88. H. Thee, Y. A. Suryaputradinata, K. A. Mumford, K.H. Smith, G. d. Silva, S. E. Kentish and G.W. Stevens, Chem. Eng. J., 210, 271 (2012).

    Article  CAS  Google Scholar 

  89. K.H. Smith, C. J. Anderson, W. Tao, K. Endo, K.A. Mumford, S. E. Kentish, A. Qader, B. Hooper and G.W. Stevens, Int. J. Greenhouse Gas Control, 10, 64 (2012).

    Article  CAS  Google Scholar 

  90. J. T. Cullinane and G. T. Rochelle, Chem. Eng. Sci., 59(17), 3619 (2004).

    Article  CAS  Google Scholar 

  91. A. Kohandaraman, Carbon dioxide capture by chemical absorption: A solvent comparison study, PhD Thesis, MIT, USA (2010).

    Google Scholar 

  92. T. Greer, A. Bedelbayev, J. M. Igreja, J. F. Gomes and B. Lie, Environ. Technol., 31(1), 107 (2010).

    Article  CAS  Google Scholar 

  93. N.A. Al-Baghli, S. A. Pruess, V. F. Yesavage and M. S. Selim, Fluid Phase Equilibria, 185(1–2), 31 (2001).

    Article  CAS  Google Scholar 

  94. F. A. Tobiesen, O. Juliussen and H. F. Svendsen, Chem. Eng. Sci., 63(10), 2641 (2008).

    Article  CAS  Google Scholar 

  95. H. M. Kvamsdal, J. P. Jakobsen and K.A. Hoff, Chem. Eng. Process. Process Intensif., 48(1), 135 (2009).

    Article  CAS  Google Scholar 

  96. S. A. Jayarathna, B. Lie and M. C. Melaaen, Comput. Chem. Eng., 53, 178 (2013).

    Article  CAS  Google Scholar 

  97. S.A. Jayarathna, B. Lie and M. C. Melaaen, Int. J. Greenhouse Gas Control, 14, 282 (2013).

    Article  CAS  Google Scholar 

  98. N. Harun, T. Nittaya, P. L. Douglas, E. Croiset and L. A. Ricardez-Sandoval, Int. J. Greenhouse Gas Control, 10, 295 (2012).

    Article  CAS  Google Scholar 

  99. S. Posch and M. Haider, Chem. Eng. Res. Des., 91(6), 977 (2013).

    Article  CAS  Google Scholar 

  100. J. Gaspar and A.-M. Cormos, Int. J. Greenhouse Gas Control, 8, 45 (2012).

    Article  CAS  Google Scholar 

  101. K. Prölβ, H. Tummescheit, S. Velut and J. Åkesson, Energy Procedia, 4, 2620 (2011).

    Article  CAS  Google Scholar 

  102. J. Åkesson, C.D. Laird, G. Lavedan, K. Prölβ, H. Tummescheit, S. Velut and Y. Zhu, Chem. Eng. Tech., 35(3), 445 (2012).

    Article  CAS  Google Scholar 

  103. A. J. Sexton, Amine oxidation in CO 2 capture processes, PhD Thesis, The University of Texas at Austin (2008).

    Google Scholar 

  104. L. Kucka, I. Müller, E.Y. Kenig and A. Górak, Chem. Eng. Sci., 58(16), 3571 (2003).

    Article  CAS  Google Scholar 

  105. E.Y. Kenig, R. Schneider and A. Górak, Chem. Eng. Sci., 56(2), 343 (2001).

    Article  CAS  Google Scholar 

  106. R. Dugas, P. Alix, E. Lemaire, P. Broutin and G. Rochelle, Energy Procedia, 1(1), 103 (2009).

    Article  CAS  Google Scholar 

  107. A. Lawal, M. Wang, P. Stephenson and H. Yeung, Fuel, 88(12), 2455 (2009).

    Article  CAS  Google Scholar 

  108. A. Lawal, M. Wang, P. Stephenson, G. Koumpouras and H. Yeung, Fuel, 89(10), 2791 (2010).

    Article  CAS  Google Scholar 

  109. A. Lawal, M. Wang, P. Stephenson and O. Obi, Fuel, 101, 115 (2012).

    Article  CAS  Google Scholar 

  110. B. Hanley and H. Shethna, Improved mass transfer correlations for random and structured packings, AIChE Spring Meeting & 6th Global Congress on Process Safety (2010).

    Google Scholar 

  111. E.Y. Kenig, L. Kucka and A. Górak, Chem. Ing. Tech., 74(6), 745 (2002).

    Article  CAS  Google Scholar 

  112. A. Arce, N. Mac Dowell, N. Shah and L. F. Vega, Int. J. Greenhouse Gas Control, 11, 236 (2012).

    Article  Google Scholar 

  113. N. Mac Dowell and N. Shah, Int. J. Greenhouse Gas Control, 13, 44 (2013).

    Article  CAS  Google Scholar 

  114. C. Biliyok, A. Lawal, M. Wang and F. Seibert, Int. J. Greenhouse Gas Control, 9, 428 (2012).

    Article  CAS  Google Scholar 

  115. G. D. Pirngruber, F. Guillou, A. Gomez and M. Clausse, Int. J. Greenhouse Gas Control, 14, 74 (2013).

    Article  CAS  Google Scholar 

  116. P. Mores, N. Scenna and S. Mussati, Int. J. Greenhouse Gas Control, 6, 21 (2012).

    Article  CAS  Google Scholar 

  117. G. Valenti, D. Bonalumi and E. Macchi, Fuel, 101, 74 (2012).

    Article  CAS  Google Scholar 

  118. S. Freguia and G. T. Rochelle, AIChE J., 49(7), 1676 (2003).

    Article  CAS  Google Scholar 

  119. J. M. Plaza, D.V. Wagener and G. T. Rochelle, Energy Procedia, 1(1), 1171 (2009).

    Article  CAS  Google Scholar 

  120. I. Halim and R. Srinivasan, A simulation-optimization framework for efficient CO 2 capture using amine absorption, Proceedings of 12 th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, Rome, Italy: Chemical Engineering Transactions (2009).

    Google Scholar 

  121. P. Mores, N. Scenna and S. Mussati, Chem. Eng. Res. Des., 89(9), 1587 (2011).

    Article  CAS  Google Scholar 

  122. A. B. Rao and E. S. Rubin, Ind. Eng. Chem. Res., 45(8), 2421 (2006).

    Article  CAS  Google Scholar 

  123. E. S. Rubin, C. Chen and A. B. Rao, Energy Pol., 35(9), 4444 (2007).

    Article  Google Scholar 

  124. J. Klemeš, I. Bulatov and T. Cockerill, Comput. Chem. Eng., 31(5–6), 445 (2007).

    Article  CAS  Google Scholar 

  125. M.R.M. Abu-Zahra, L.H. J. Schneiders, J.P.M. Niederer, P.H.M. Feron and G. F. Versteeg, Int. J. Greenhouse Gas Control, 1(1), 37 (2007).

    Article  CAS  Google Scholar 

  126. P. Mores, N. Rodríguez, N. Scenna and S. Mussati, Int. J. Greenhouse Gas Control, 10, 148 (2012).

    Article  Google Scholar 

  127. M. Karimi, M. Hillestad and H. F. Svendsen, Chem. Eng. Res. Des., 89(8), 1229 (2011).

    Article  CAS  Google Scholar 

  128. B.A. Oyenekan and G.T. Rochelle, AIChE J., 53(12), 3144 (2007).

    Article  CAS  Google Scholar 

  129. M. S. Jassim and G.T. Rochelle, Ind. Eng. Chem. Res., 45(8), 2465 (2005).

    Article  CAS  Google Scholar 

  130. L.A. Pellegrini, S. Moioli and S. Gamba, Chem. Eng. Res. Des., 89(9), 1676 (2011).

    Article  CAS  Google Scholar 

  131. B.A. Oyenekan and G. T. Rochelle, Ind. Eng. Chem. Res., 45(8), 2457 (2005).

    Article  CAS  Google Scholar 

  132. D. H. Van Wagener and G. T. Rochelle, Chem. Eng. Res. Des., 89(9), 1639 (2011).

    Article  CAS  Google Scholar 

  133. J. Gáspár and A.-M. Cormoş, Comput. Chem. Eng., 35(10), 2044 (2011).

    Article  CAS  Google Scholar 

  134. A. Ghaemi, S. Shahhosseini and M.G. Maragheh, Chem. Eng. J., 149(1–3), 110 (2009).

    Article  CAS  Google Scholar 

  135. R. Schneider, F. Sander and A. Górak, Chem. Eng. Process. Process Intensif., 42(12), 955 (2003).

    Article  CAS  Google Scholar 

  136. S.A. Jayarathna, B. Lie and M.C. Melaaen, Energy Procedia, 4, 1797 (2011).

    Article  CAS  Google Scholar 

  137. H. Chalmers, M. Lucquiaud, J. Gibbins and M. Leach, J. Environ. Eng., 135(6), 449 (2009).

    Article  CAS  Google Scholar 

  138. S. Ziaii, G. T. Rochelle and T. F. Edgar, Ind. Eng. Chem. Res., 48(13), 6105 (2009).

    Article  CAS  Google Scholar 

  139. S. Ziaii, S. Cohen, G. T. Rochelle, T. F. Edgar and M. E. Webber, Energy Procedia, 1(1), 4047 (2009).

    Article  CAS  Google Scholar 

  140. Y.-J. Lin, T.-H. Pan, D.S.-H. Wong, S.-S. Jang, Y.-W. Chi and C.-H. Yeh, Ind. Eng. Chem. Res., 50(3), 1338 (2010).

    Article  CAS  Google Scholar 

  141. M. Panahi, M. Karimi, S. Skogestad, M. Hillestad and H. F. Svendsen, Self-optimizing and control structure design for a CO 2 capturing plant, Proceedings of the 2nd Annual Gas Processing Symposium, Amsterdam, Elsevier (2010).

    Google Scholar 

  142. A. Behroozsarand and S. Shafiei, J. Nat. Gas Sci. Eng., 2(6), 284 (2010).

    Article  CAS  Google Scholar 

  143. M. Panahi and S. Skogestad, Chem. Eng. Process. Process Intensif., 50(3), 247 (2011).

    Article  CAS  Google Scholar 

  144. M. Panahi and S. Skogestad, Chem. Eng. Process. Process Intensif., 52, 112 (2012).

    Article  CAS  Google Scholar 

  145. H.W. Pennline, D.R. Luebke, K.L. Jones, C.R. Myers, B. I. Morsi, Y. J. Heintz and J. B. Ilconich, Fuel Process. Technol., 89(9), 897 (2008).

    Article  CAS  Google Scholar 

  146. D.R.L. Henry W. Pennline, Kenneth L. Jones, Badie I. Morsi, Yannick J. Heintz and Jeffery B. Ilconich, Carbon dioxide cpature and separation techniques for gasification-based power generation point sources, 100th AWMA Annual Conference and Exhibition, Pitssburgh, PA (2007).

    Google Scholar 

  147. A.H. William Breckenridge, James O.Y. Ong and Curtis Sharp, Use of SELEXOL process in coke gasification to ammonia project, Gas treating technical paper, Laurance Reid Gas Conditioning Conference, The University of Oklahoma Norman, Oklahoma (2000).

    Google Scholar 

  148. D.R. S. Nick Korens and Donald J. Wilhelm, Process screening analysis of alternative gas treating and sulfur removal for gasification, U.S. DOE, NETL Pittsburgh (2002).

    Google Scholar 

  149. L. Sun and R. Smith, J. Cleaner Prod., 39, 321 (2013).

    Article  Google Scholar 

  150. A. Padurean, C.-C. Cormos and P.-S. Agachi, Int. J. Greenhouse Gas Control, 7, 1 (2012).

    Article  CAS  Google Scholar 

  151. Midwest Geological sequestration consortium (MGSC), National energy technology laboratory (2004).

    Google Scholar 

  152. E. Freireich and R. N. Tennyson, Increased natural gas recovery from physical solvent gas treating systems, Proceedings of the Laurance Reid Gas Conditioning Conference, Norman (1977).

    Google Scholar 

  153. J. Mak, D. Nielsen and D. Schulte, An update of the Fluor solvent process, Proceedings of hte Laurance Reid Gas Conditioning Conference, Norman (2007).

    Google Scholar 

  154. M. Kriebel, Ullmann’s Encyclopedia of Industrial chemistry, Gas Purification, Weinheim, Germany (1989).

    Google Scholar 

  155. N. Otter, Carbon dioxide capture and storage, Report of DTI international technology service mission to the USA and Canada, Advanced Power Generation Technology Forum (2001).

    Google Scholar 

  156. C.A.-G. Collot, Draft-Prospects for hydrogen from coal, IEA Coal Research, The Clean Coal Centre, UK (2003).

    Google Scholar 

  157. M. Gupta, I. Coyle, K. Thambimuthu and C. E. T. Centre, CO 2 Capture Technologies and Opportunities in Canada: “Strawman Document for CO 2 Capture and Storage (CC & S) Technology Roadmap.”, CANMET Energy Technology Centre, Natural Resources Canada (2003).

    Google Scholar 

  158. S. Rezvani, Y. Huang, D. McIlveen-Wright, N. Hewitt and J. D. Mondol, Fuel, 88(12), 2463 (2009).

    Article  CAS  Google Scholar 

  159. M. Kanniche and C. Bouallou, Appl. Therm. Eng., 27(16), 2693 (2007).

    Article  Google Scholar 

  160. C. Descamps, C. Bouallou and M. Kanniche, Energy, 33(6), 874 (2008).

    Article  CAS  Google Scholar 

  161. C.-C. Cormos, Int. J. Hydrog. Energy, 35(14), 7485 (2010).

    Article  CAS  Google Scholar 

  162. C. Chen and E. S. Rubin, Energy Pol., 37(3), 915 (2009).

    Article  Google Scholar 

  163. C. Chen, A technical and economic assessment of CO 2 capture technology for IGCC power plants, PhD Thesis, Carnegie Mellon University, Pttsburgh (2005).

    Google Scholar 

  164. W. Guo, F. Feng, G. Song, J. Xiao and L. Shen, J. Nat. Gas Chem., 21(6), 633 (2012).

    Article  CAS  Google Scholar 

  165. D. P. Harrison, The role of solids in CO 2 capture: A mini review, Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803.

  166. B.G. Miller, 10 - CO 2 Capture and Storage, Butterworth-Heinemann, Boston (2011).

    Google Scholar 

  167. G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, Adsorption, 14(2–3), 415 (2008).

    Article  CAS  Google Scholar 

  168. J. Zhang and P. A. Webley, Environ. Sci. Technol., 42(2), 563 (2008).

    Article  CAS  Google Scholar 

  169. J. Zhang, P. Xiao, G. Li and P.A. Webley, Energy Procedia, 1(1), 1115 (2009).

    Article  CAS  Google Scholar 

  170. K. T. Chue, J.N. Kim, Y. J. Yoo, S.H. Cho and R. T. Yang, Ind. Eng. Chem. Res., 34(2), 591 (1995).

    Article  CAS  Google Scholar 

  171. J.-H. Park, H.-T. Beum, J.-N. Kim and S.-H. Cho, Ind. Eng. Chem. Res., 41(16), 4122 (2002).

    Article  CAS  Google Scholar 

  172. T.C. Drage, A. Arenillas, K.M. Smith and C. E. Snape, Micropor. Mesopor. Mater., 116(1–3), 504 (2008).

    Article  CAS  Google Scholar 

  173. J. Bonjour, J.-B. Chalfen and F. Meunier, Ind. Eng. Chem. Res., 41(23), 5802 (2002).

    Article  CAS  Google Scholar 

  174. M. Clausse, J. Bonjour and F. Meunier, Adsorption, 9(1), 77 (2003).

    Article  CAS  Google Scholar 

  175. A.D. E. James A. Ritter, Steven P. Reynolds, Hai Du and Amal Mehrotra, New adsorption cycles for carbon dioxide capture and concentration, University of South Carolina, Department of Chemical Engineering, Columbia, SC 29208 (2009).

    Google Scholar 

  176. S. Irene, CO 2 reduction-prospects for coal, IEA-Coal, CCC/26 (1999).

    Google Scholar 

  177. M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata and Y. Kageyama, Energy Convers. Manage., 37(6–8), 929 (1996).

    Article  CAS  Google Scholar 

  178. C. Stewart and M.-A. Hessami, Energy Convers. Manage., 46(3), 403 (2005).

    Article  CAS  Google Scholar 

  179. C. Shen, C.A. Grande, P. Li, J. Yu and A.E. Rodrigues, Chem. Eng. J., 160(2), 398 (2010).

    Article  CAS  Google Scholar 

  180. M.G. Plaza, S. García, F. Rubiera, J. J. Pis and C. Pevida, Chem. Eng. J., 163(1–2), 41 (2010).

    Article  CAS  Google Scholar 

  181. S. García, M.V. Gil, C. F. Martín, J. J. Pis, F. Rubiera and C. Pevida, Chem. Eng. J., 171(2), 549 (2011).

    Article  CAS  Google Scholar 

  182. R.V. Siriwardane, M.-S. Shen, E. P. Fisher and J.A. Poston, Energy Fuel, 15(2), 279 (2001).

    Article  CAS  Google Scholar 

  183. Linde AG, Engineering Division, Rectisol Wash (2007). Available from: http://www.linde-engineering.com/en/process_plants/hydrogen_and_synthesis_gas_plants/gas_processing_plants/rectisol_wash/index.html.

    Google Scholar 

  184. B. P. Spigarelli and S. K. Kawatra, Journal of CO 2 Utilization, 1, 69 (2013).

    Article  Google Scholar 

  185. B. Arstad, H. Fjellvåg, K. O. Kongshaug, O. Swang and R. Blom, Adsorption, 14(6), 755 (2008).

    Article  CAS  Google Scholar 

  186. A. R. Millward and O.M. Yaghi, J. Am. Chem. Soc., 127(51), 17998 (2005).

    Article  CAS  Google Scholar 

  187. C. Zhao, X. Chen, E. J. Anthony, X. Jiang, L. Duan, Y. Wu, W. Dong and C. Zhao, Prog. Energy Combust. Sci., DOI:10.1016/j.pecs.2013.05.001 (2013).

    Google Scholar 

  188. Y. Lara, P. Lisbona, A. Martínez and L. M. Romeo, Energy Procedia, 1(1), 1359 (2009).

    Article  CAS  Google Scholar 

  189. S. Lee and J. Kim, Catal. Surv. Asia, 11(4), 171 (2007).

    Article  CAS  Google Scholar 

  190. S.C. Lee, B.Y. Choi, T. J. Lee, C.K. Ryu, Y. S. Ahn and J.C. Kim, Catal. Today, 111(3–4), 385 (2006).

    Article  CAS  Google Scholar 

  191. S.C. Lee, Y.M. Kwon, C.Y. Ryu, H. J. Chae, D. Ragupathy, S.Y. Jung, J. B. Lee, C. K. Ryu and J.C. Kim, Fuel, 90(4), 1465 (2011).

    Article  CAS  Google Scholar 

  192. K. Kim, S. Yang, J.B. Lee, T. H. Eom, C. K. Ryu, S.-H. Jo, Y. C. Park and C.-K. Yi, Int. J. Greenhouse Gas Control, 9, 347 (2012).

    Article  CAS  Google Scholar 

  193. A. Iwan, H. Stephenson, W.C. Ketchie and A. A. Lapkin, Chem. Eng. J., 146(2), 249 (2009).

    Article  CAS  Google Scholar 

  194. E. Ochoa-Fernández, M. Rønning, T. Grande and D. Chen, Chem. Mater., 18(6), 1383 (2006).

    Article  CAS  Google Scholar 

  195. T. Ohashi and K. Nakagawa, MRS Online Proceedings Library, 547, 249 (1998).

    Google Scholar 

  196. M. Kato and K. Nakagawa, J. Ceram. Soc. Jpn., 109(1275), 911 (2001).

    Article  CAS  Google Scholar 

  197. M. Kato, Nakagawa, K., Ohashi, T., Yoshikawa S., and Essaki, K. U. Patent, US006387845B1 (2002b).

  198. K. Essaki, K. Nakagawa, M. Kato and H. Uemoto, J. Chem. Eng. Jpn., 37(6), 772 (2004).

    Article  CAS  Google Scholar 

  199. N.K. Essaki Kenji, Kato Masahiro and Uemoto Hideo, J. Chem. Eng. Jpn., 37(6), 772 (2004).

    Article  Google Scholar 

  200. K. Essaki, M. Kato and H. Uemoto, J. Mater. Sci., 40(18), 5017 (2005).

    Article  CAS  Google Scholar 

  201. D. Cruz, S. Bulbulian, E. Lima and H. Pfeiffer, J. Solid State Chem., 179(3), 909 (2006).

    Article  CAS  Google Scholar 

  202. M. K. a. K. N. Kenji Essaki, J. Ceram. Soc. Jpn., 114(9), 739 (2006).

    Article  Google Scholar 

  203. T. Yamaguchi, T. Niitsuma, B.N. Nair and K. Nakagawa, J. Membr. Sci., 294(1–2), 16 (2007).

    Article  CAS  Google Scholar 

  204. K. Essaki, T. Muramatsu and M. Kato, Int. J. Hydrog. Energy, 33(22), 6612 (2008).

    Article  CAS  Google Scholar 

  205. M. Olivares-Marín, T.C. Drage and M.M. Maroto-Valer, Int. J. Greenhouse Gas Control, 4(4), 623 (2010).

    Article  CAS  Google Scholar 

  206. K. Essaki, T. Muramatsu and M. Kato, Int. J. Hydrog. Energy, 33(17), 4555 (2008).

    Article  CAS  Google Scholar 

  207. M. Kato, S. Yoshikawa and K. Nakagawa, J. Mater. Sci. Lett., 21(6), 485 (2002).

    Article  CAS  Google Scholar 

  208. B.N. Nair, R. P. Burwood, V. J. Goh, K. Nakagawa and T. Yamaguchi, Prog. Mater Sci., 54(5), 511 (2009).

    Article  CAS  Google Scholar 

  209. R. Xiong, Novel inorganic sorbent for high temperature carbon dioxide separation, Master of Science, University of Cincinnate (2003).

    Google Scholar 

  210. K. Nakagawa and T. Ohashi, J. Electrochem. Soc., 145(4), 1344 (1998).

    Article  CAS  Google Scholar 

  211. M. J. Venegas, E. Fregoso-Israel, R. Escamilla and H. Pfeiffer, Ind. Eng. Chem. Res., 46(8), 2407 (2007).

    Article  CAS  Google Scholar 

  212. M. Seggiani, M. Puccini and S. Vitolo, Int. J. Greenhouse Gas Control, 5(4), 741 (2011).

    Article  CAS  Google Scholar 

  213. K. Terasaka, Y. Suyama, K. Nakagawa, M. Kato and K. Essaki, Chem. Eng. Technol., 29(9), 1118 (2006).

    Article  CAS  Google Scholar 

  214. R.B. Khomane, B.K. Sharma, S. Saha and B.D. Kulkarni, Chem. Eng. Sci., 61(10), 3415 (2006).

    Article  CAS  Google Scholar 

  215. Y. Liang, D. P. Harrison, R. P. Gupta, D. A. Green and W. J. McMichael, Energy Fuel, 18(2), 569 (2004).

    Article  CAS  Google Scholar 

  216. T.N. David A. Green, Brian S. Turk, Paul Box, Weijiong Li and Raghubir P. Gupta, Carbon dioxide capture from flue gas using dry regenerable sorbents, Research Triangle Institute (2005).

    Google Scholar 

  217. G.G. Santillán-Reyes and H. Pfeiffer, Int. J. Greenhouse Gas Control, 5(6), 1624 (2011).

    Article  CAS  Google Scholar 

  218. R.R. Kondakindi, G. McCumber, S. Aleksic, W. Whittenberger and M.A. Abraham, Int. J. Greenhouse Gas Control, 15, 65 (2013).

    Article  CAS  Google Scholar 

  219. S.C. Lee, H. J. Chae, S. J. Lee, Y.H. Park, C.K. Ryu, C.K. Yi and J. C. Kim, J. Mol. Catal. B: Enzym., 56(2–3), 179 (2009).

    Article  CAS  Google Scholar 

  220. S. Lee, Y. Kwon, Y. Park, W. Lee, J. Park, C. Ryu, C. Yi and J. Kim, Top. Catal., 53(7–10), 641 (2010).

    Article  CAS  Google Scholar 

  221. S.C. Lee, H. J. Chae, Y. M. Kwon, W. S. Lee, H. S. Nam, S.Y. Jung, J. B. Lee, C. K. Ryu and J. C. Kim, J. Nanoelectron. Optoelectron., 5(2), 212 (2010).

    Article  CAS  Google Scholar 

  222. S. Lee, H. Chae, B. Choi, S. Jung, C. Ryu, J. Park, J.-I. Baek, C. Ryu and J. Kim, Korean J. Chem. Eng., 28(2), 480 (2011).

    Article  CAS  Google Scholar 

  223. J.B. Lee, T.H. Eom, B. S. Oh, J.-I. Baek, J. Ryu, W. S. Jeon, Y. H. Wi and C. K. Ryu, Energy Procedia, 4, 1494 (2011).

    Article  CAS  Google Scholar 

  224. S.C. Lee, Y.M. Kwon, H. J. Chae, S.Y. Jung, J.B. Lee, C.K. Ryu, C. K. Yi and J. C. Kim, Fuel, 104, 882 (2013).

    Article  CAS  Google Scholar 

  225. C.-K. Yi, S.-H. Jo, Y. Seo, J.-B. Lee and C.-K. Ryu, Int. J. Greenhouse Gas Control, 1(1), 31 (2007).

    Article  CAS  Google Scholar 

  226. Y.C. Park, S.-H. Jo, C.K. Ryu and C.-K. Yi, Energy Procedia, 1(1), 1235 (2009).

    Article  CAS  Google Scholar 

  227. Y.C. Park, S.-H. Jo, C.K. Ryu and C.-K. Yi, Energy Procedia, 4, 1508 (2011).

    Article  Google Scholar 

  228. Y. Park, S.-H. Jo, K.-W. Park, Y. Park and C.-K. Yi, Korean J. Chem. Eng., 26(3), 874 (2009).

    Article  CAS  Google Scholar 

  229. Y. Seo, S. Jo, C. Ryu and C. Yi, J. Environ. Eng., 135(6), 473 (2009).

    Article  CAS  Google Scholar 

  230. O.-a. Jaiboon, B. Chalermsinsuwan, L. Mekasut and P. Piumsomboon, Chem. Eng. J., 219, 262 (2013).

    Article  CAS  Google Scholar 

  231. R. Veneman, Z. S. Li, J. A. Hogendoorn, S. R. A. Kersten and D.W. F. Brilman, Chem. Eng. J., 207–208, 18 (2012).

    Article  CAS  Google Scholar 

  232. S. Sjostrom and H. Krutka, Fuel, 89(6), 1298 (2010).

    Article  CAS  Google Scholar 

  233. S. Kwon, M. Fan, H. F.M. DaCosta, A.G. Russell, K.A. Berchtold and M. K. Dubey, Chapter 10 - CO 2 Sorption, William Andrew Publishing: Boston (2011).

    Google Scholar 

  234. F. Rezaei, A. Mosca, P. Webley, J. Hedlund and P. Xiao, Ind. Eng. Chem. Res., 49(10), 4832 (2010).

    Article  CAS  Google Scholar 

  235. R. P. Lively, D. P. Leta, B. A. DeRites, R. R. Chance and W. J. Koros, Chem. Eng. J., 171(3), 801 (2011).

    Article  CAS  Google Scholar 

  236. Y. Labreche, R. P. Lively, F. Rezaei, G. Chen, C.W. Jones and W. J. Koros, Chem. Eng. J., 221, 166 (2013).

    Article  CAS  Google Scholar 

  237. F. Rezaei and P. Webley, Sep. Purif. Technol., 70(3), 243 (2010).

    Article  CAS  Google Scholar 

  238. J.H. Drese, S. Choi, R. P. Lively, W. J. Koros, D. J. Fauth, M. L. Gray and C.W. Jones, Adv. Funct. Mater., 19(23), 3821 (2009).

    Article  CAS  Google Scholar 

  239. R. P. Lively, R. R. Chance, B. T. Kelley, H.W. Deckman, J. H. Drese, C.W. Jones and W. J. Koros, Ind. Eng. Chem. Res., 48(15), 7314 (2009).

    Article  CAS  Google Scholar 

  240. Z. Xiang, D. Cao, J. Lan, W. Wang and D. P. Broom, Energy Environ. Sci., 3(10), 1469 (2010).

    Article  CAS  Google Scholar 

  241. H. Gao, S. Pishney and M. J. Janik, Surf. Sci., 609, 140 (2013).

    Article  CAS  Google Scholar 

  242. Y. Jing, L. Wei, Y. Wang and Y. Yu, Chem. Eng. J., 220, 264 (2013).

    Article  CAS  Google Scholar 

  243. R. S. Pillai, S. A. Peter and R.V. Jasra, Micropor. Mesopor. Mater., 162, 143 (2012).

    Article  CAS  Google Scholar 

  244. B. J. Maring and P.A. Webley, Int. J. Greenhouse Gas Control, 15, 16 (2013).

    Article  CAS  Google Scholar 

  245. J. Ylätalo, J. Ritvanen, B. Arias, T. Tynjälä and T. Hyppänen, Int. J. Greenhouse Gas Control, 9, 130 (2012).

    Article  CAS  Google Scholar 

  246. E. Abbasi, A. Hassanzadeh and J. Abbasian, Fuel, 105, 128 (2013).

    Article  CAS  Google Scholar 

  247. K. Nakagawa and T. Ohashi, J. Electrochem. Soc., 145(4), 1344 (1998).

    Article  CAS  Google Scholar 

  248. J. Schell, N. Casas and M. Mazzotti, Energy Procedia, 1(1), 655 (2009).

    Article  CAS  Google Scholar 

  249. J. R. Moate and M. D. LeVan, Appl. Therm. Eng., 30(6–7), 658 (2010).

    Article  CAS  Google Scholar 

  250. Y. S. Yu, W.Q. Liu, H. An, F. S. Yang, G.X. Wang, B. Feng, Z.X. Zhang and V. Rudolph, Int. J. Greenhouse Gas Control, 10, 510 (2012).

    Article  CAS  Google Scholar 

  251. N. Casas, J. Schell, L. Joss and M. Mazzotti, Sep. Purif. Technol., 104, 183 (2013).

    Article  CAS  Google Scholar 

  252. I. Martínez, G. Grasa, R. Murillo, B. Arias and J. C. Abanades, Chem. Eng. J., 215–216, 174 (2013).

    Article  CAS  Google Scholar 

  253. K.A. Berchtold, Novel polymeric-metallic composite membranes for CO 2 separation at elevated temperatures, American Filtration and Separation Society Fall Topical Conference, Pittsburgh, PA (2006).

    Google Scholar 

  254. R. Bounaceur, N. Lape, D. Roizard, C. Vallieres and E. Favre, Energy, 31(14), 2556 (2006).

    Article  CAS  Google Scholar 

  255. J. C. M. Pires, F. G. Martins, M. C.M. Alvim-Ferraz and M. Simões, Chem. Eng. Res. Des., 89(9), 1446 (2011).

    Article  CAS  Google Scholar 

  256. C.A. Scholes, S. E. Kentish and G.W. Stevens, Energy Procedia, 1(1), 311 (2009).

    Article  CAS  Google Scholar 

  257. C. A. Scholes, G.W. Stevens and S. E. Kentish, J. Membr. Sci., 350(1–2), 189 (2010).

    Article  CAS  Google Scholar 

  258. G. Xomeritakis, C.Y. Tsai, Y.B. Jiang and C. J. Brinker, J. Membr. Sci., 341(1–2), 30 (2009).

    Article  CAS  Google Scholar 

  259. T.C. Merkel, H. Lin, X. Wei and R. Baker, J. Membr. Sci., 359(1–2), 126 (2010).

    Article  CAS  Google Scholar 

  260. D. Shekhawat, R.D. Luebke and W.H. Pennline, A review of carbon dioxide selective membranes-A topical teport, National Energy Technology Laboratory, United States Department of Energy (2003).

    Book  Google Scholar 

  261. P.H.M. Feron, Carbon dioxide capture: The characterisation of gas separation/removal membrane systems applied to the treatment of flue gases arising from power plant generation using fossiel fuel, IEA/92/08, IEA Greenhouse Gas R&D programme, Cheltenham, UK (1992).

    Google Scholar 

  262. O. Falk-Pedersen and H. Dannström, Energy Convers. Manage., 38, Supplement, S81 (1997).

    Article  Google Scholar 

  263. F. Gallucci, E. Fernandez, P. Corengia and M. van Sint Annaland, Chem. Eng. Sci., 92, 40 (2013).

    Article  CAS  Google Scholar 

  264. S. Ban and C. Huang, J. Membr. Sci., 417–418, 113 (2012).

    Article  CAS  Google Scholar 

  265. M. T. Ho, G.W. Allinson and D. E. Wiley, Ind. Eng. Chem. Res., 47(5), 1562 (2008).

    Article  CAS  Google Scholar 

  266. N. S. Siefert and S. Litster, Appl. Energy, 107, 315 (2013).

    Article  CAS  Google Scholar 

  267. K. Ramasubramanian, H. Verweij and W. S. Winston Ho, J. Membr. Sci., 421–422, 299 (2012).

    Article  CAS  Google Scholar 

  268. R. Koc, N.K. Kazantzis, W. J. Nuttall and Y. H. Ma, J. Loss Prev. Process Ind., 26(3), 468 (2013).

    Article  Google Scholar 

  269. J. Franz, S. Schiebahn, L. Zhao, E. Riensche, V. Scherer and D. Stolten, Int. J. Greenhouse Gas Control, 13, 180 (2013).

    Article  CAS  Google Scholar 

  270. A. Hussain and M.-B. Hägg, J. Membr. Sci., 359(1–2), 140 (2010).

    Article  CAS  Google Scholar 

  271. B. Belaissaoui, D. Willson and E. Favre, Chem. Eng. J., 211–212, 122 (2012).

    Article  CAS  Google Scholar 

  272. L. Zhao, R. Menzer, E. Riensche, L. Blum and D. Stolten, Energy Procedia, 1(1), 269 (2009).

    Article  CAS  Google Scholar 

  273. E. Favre, J. Membr. Sci., 294(1–2), 50 (2007).

    Article  CAS  Google Scholar 

  274. K. Okabe, H. Mano and Y. Fujioka, Int. J. Greenhouse Gas Control, 2(4), 485 (2008).

    Article  CAS  Google Scholar 

  275. B. T. Low, L. Zhao, T. C. Merkel, M. Weber and D. Stolten, J. Membr. Sci., 431, 139 (2013).

    Article  CAS  Google Scholar 

  276. D. Bocciardo, M. C. Ferrari and S. Brandani, Procedia Eng., 44, 1278 (2012).

    Article  Google Scholar 

  277. E. S. Rubin, Elem., 4(5), 311 (2008).

    Article  CAS  Google Scholar 

  278. R.W. Baker, Recent developments and future directions in membrane modules, 12th Aachener membrane kolloquim, Aachen, Germany (2008).

    Google Scholar 

  279. S. Zhou, X. Chen, T. Nguyen, A. K. Voice and G. T. Rochelle, ChemSusChem, 3(8), 913 (2010).

    Article  CAS  Google Scholar 

  280. G. T.R. Hongyi Dang, CO 2 absorption rate and solubility in MEA/PZ/water, Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, May 14–17 (2001).

    Google Scholar 

  281. P.R. Kevin, T.Y. James and W. P. Henry, Int. J. Environ. Technol. Manage., 4(1/2), 89 (2004).

    Google Scholar 

  282. A. Aboudheir, P. Tontiwachwuthikul and R. Idem, Ind. Eng. Chem. Res., 45(8), 2553 (2005).

    Article  CAS  Google Scholar 

  283. Y. Liu, L. Zhang and S. Watanasiri, Ind. Eng. Chem. Res., 38(5), 2080 (1999).

    Article  CAS  Google Scholar 

  284. F.M. Khan, V. Krishnamoorthi and T. Mahmud, Chem. Eng. Res. Des., 89(9), 1600 (2011).

    Article  CAS  Google Scholar 

  285. A. Bedelbayev, Model based control of absorption column for CO 2 capturing, M.Sc. Thesis, 2008, Telemark University College, Porsgrunn, Norway.

    Google Scholar 

  286. T. Greer, Modeling and simulation of post combustion CO 2 capturing, M.Sc. Thesis, Telemark University College, Porsgrunn, Norway (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Hyung Lee.

Additional information

Jay H. Lee obtained his B.S. degree in Chemical Engineering from the University of Washington, Seattle, in 1986, and his Ph.D. degree in Chemical Engineering from California Institute of Technology, Pasadena, in 1991. From 1991 to 1998, he was with the Department of Chemical Engineering at Auburn University, AL, as an Assistant Professor and an Associate Professor. From 1998–2000, he was with School of Chemical Engineering at Purdue University, West Lafayette and then with the School of Chemical Engineering at Georgia Institute of Technology, Atlanta. Starting this fall, he is the Head of the Chemical and Biomolecular Engineering Department at KAIST, Korea. He has held visiting appointments at E. I. Du Pont de Numours, Wilmington, in 1994 and at Seoul National University, Seoul, Korea, in 1997. He was a recipient of the National Science Foundation’s Young Investigator Award in 1993 and was elected as an IEEE Fellow, an IFAC Fellow, and a full member of the Korean Academy of Science and Technology in 2011. He is also the recipient of the 2013 Computing in Chemical Engineering Award given by the AIChE’s CAST Division. He published over 130 manuscripts in SCI journals with more than 3200 ISI citations. His research interests are in the areas of system identification, state estimation, robust control, model predictive control and approximate dynamic programming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaman, M., Lee, J.H. Carbon capture from stationary power generation sources: A review of the current status of the technologies. Korean J. Chem. Eng. 30, 1497–1526 (2013). https://doi.org/10.1007/s11814-013-0127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0127-3

Key words

Navigation