Korean Journal of Chemical Engineering

, Volume 30, Issue 8, pp 1497–1526 | Cite as

Carbon capture from stationary power generation sources: A review of the current status of the technologies

  • Muhammad Zaman
  • Jay Hyung LeeEmail author
Invited Review Paper


The world will need greatly increased energy supply in the future for sustained economic growth, but the related CO2 emissions and the resulting climate changes are becoming major concerns. CO2 is one of the most important greenhouse gases that is said to be responsible for approximately 60% of the global warming. Along with improvement of energy efficiency and increased use of renewable energy sources, carbon capture and sequestration (CCS) is expected to play a major role in curbing the greenhouse gas emissions on a global scale. This article reviews the various options and technologies for CO2 capture, specifically for stationary power generation sources. Many options exist for carbon dioxide capture from such sources, which vary with power plant types, and include post-combustion capture, pre-combustion capture, oxy fuel combustion capture, and chemical looping combustion capture. Various carbon dioxide separation technologies can be utilized with these options, such as chemical absorption, physical absorption, adsorption, and membrane separation. Most of these capture technologies are still at early stages of development. Recent progress and remaining challenges for the various CO2 capture options and technologies are reviewed in terms of capacity, selectivity, stability, energy requirements, etc. Hybrid and modified systems hold huge future potentials, but significant progress is required in materials synthesis and stability, and implementations of these systems on demonstration plants are needed. Improvements and progress made through applications of process systems engineering concepts and tools are highlighted and current gaps in the knowledge are also mentioned. Finally, some recommendations are made for future research directions.

Key words

Carbon Capture Technologies Absorption Adsorption Membranes Process Systems Engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Folger, Carbon capture: A technology assessment, Congressional Research Service Report, University of Nebraska — Lincoln (2010).Google Scholar
  2. 2.
    A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36(20), 4467 (2002).CrossRefGoogle Scholar
  3. 3.
    J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskel and C. A. Johnson, Climate Change 2001: The scientific basis, Cambridge, UK (2001).Google Scholar
  4. 4.
    Energy Technology Perspectives 2008, Scenarios & Strategies to 2050, IEA (2008).Google Scholar
  5. 5.
    IPCC special report on carbon dioxide capture and storage (2005).Google Scholar
  6. 6.
    P. H.M. Feron and C.A. Hendriks, Oil. Gas Sci. Tech. — Rev. IFP, 60(3), 451 (2005).CrossRefGoogle Scholar
  7. 7.
    DOE/NETL carbon dioxide capture and storage RD&D roadmap, Proceedings of the Laurance Reid gas Conditioning Conference (2010).Google Scholar
  8. 8.
    D. Aaron and C. Tsouris, Sep. Sci. Technol., 40(1–3), 321 (2005).CrossRefGoogle Scholar
  9. 9.
    M.M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 63(18), 4433 (2008).CrossRefGoogle Scholar
  10. 10.
    H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland and I. Wright, J. Environ. Sci., 20(1), 14 (2008).CrossRefGoogle Scholar
  11. 11.
    M.R. Othman, Martunus, R. Zakaria and W. J. N. Fernando, Energy Pol., 37(5), 1718 (2009).CrossRefGoogle Scholar
  12. 12.
    S. I. Plasynski, J. T. Litynski, H.G. McIlvried and R. D. Srivastava, Crit. Rev. Plant Sci., 28(3), 123 (2009).CrossRefGoogle Scholar
  13. 13.
    A. A. Olajire, Energy, 35(6), 2610 (2010).CrossRefGoogle Scholar
  14. 14.
    E. S. Rubin, H. Mantripragada, A. Marks, P. Versteeg and J. Kitchin, Prog. Energy Combust. Sci., 38(5), 630 (2012).CrossRefGoogle Scholar
  15. 15.
    R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas and D. Gelowitz, Ind. Eng. Chem. Res., 45(8), 2414 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Ma’mun, J. P. Jakobsen, H. F. Svendsen and O. Juliussen, Ind. Eng. Chem. Res., 45(8), 2505 (2005).CrossRefGoogle Scholar
  17. 17.
    N. Ramachandran, A. Aboudheir, R. Idem and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 45(8), 2608 (2006).CrossRefGoogle Scholar
  18. 18.
    X. Chen, F. Closmann and G. T. Rochelle, Energy Procedia, 4, 101 (2011).CrossRefGoogle Scholar
  19. 19.
    P. Galindo, A. Schäffer, K. Brechtel, S. Unterberger and G. Scheffknecht, Fuel, 101, 2 (2012).CrossRefGoogle Scholar
  20. 20.
    D. A. Glasscock, J. E. Critchfield and G. T. Rochelle, Chem. Eng. Sci., 46(11), 2829 (1991).CrossRefGoogle Scholar
  21. 21.
    G. Puxty, R. Rowland and M. Attalla, Chem. Eng. Sci., 65(2), 915 (2010).CrossRefGoogle Scholar
  22. 22.
    R.W. Bucklin and R. L. Schendel, Comparison of physical solvents used for gas processing, in acid and sour gas treating processes, S. A. Newman, Gulf Publishing Co., Houston, TX (1985).Google Scholar
  23. 23.
    R.W. Bucklin and R.L. Schendel, Energy Progress, 4(3), 137 (1984).Google Scholar
  24. 24.
    B. Barry and L. Lili, A comparison of physical solvents for acid gas removal, Bryan Research & Engineering, Inc., Bryan, Texas, U.S.A.Google Scholar
  25. 25.
    M. L. Gray, Y. Soong, K. J. Champagne, H. Pennline, J. P. Baltrus, R.W. Stevens Jr., R. Khatri, S. S. C. Chuang and T. Filburn, Fuel Process. Technol., 86(14–15), 1449 (2005).CrossRefGoogle Scholar
  26. 26.
    G. P. Knowles, J.V. Graham, S.W. Delaney and A. L. Chaffee, Fuel Process. Technol., 86(14–15), 1435 (2005).CrossRefGoogle Scholar
  27. 27.
    G. P. Knowles, S.W. Delaney and A. L. Chaffee, Ind. Eng. Chem. Res., 45(8), 2626 (2006).CrossRefGoogle Scholar
  28. 28.
    X. Xu, C. Song, B.G. Miller and A.W. Scaroni, Fuel Process. Technol., 86(14–15), 1457 (2005).CrossRefGoogle Scholar
  29. 29.
    H. Y. Huang, R. T. Yang, D. Chinn and C. L. Munson, Ind. Eng. Chem. Res., 42(12), 2427 (2002).CrossRefGoogle Scholar
  30. 30.
    X. Xu, C. Song, J.M. Andresen, B.G. Miller and A.W. Scaroni, Energ. Fuel., 16(6), 1463 (2002).CrossRefGoogle Scholar
  31. 31.
    C. A. Grande and A. E. Rodrigues, Int. J. Greenhouse Gas Control, 2(2), 194 (2008).Google Scholar
  32. 32.
    N. Hedin, L. Andersson, L. Bergström and J. Yan, Appl. Energy, 104, 418 (2013).CrossRefGoogle Scholar
  33. 33.
    M. Ishibashi, K. Otake, S. Kanamori and A. Yasutake, Study on CO 2 removal technology from flue gas of thermal power plant by physical adsorption method, B. E. P. Riemer and A. Wokaun, Elsevier Science, Ltd., London (1999).Google Scholar
  34. 34.
    N. Konduru, P. Lindner and N. M. Assaf-Anid, AIChE J., 53(12), 3137 (2007).CrossRefGoogle Scholar
  35. 35.
    J. Mérel, M. Clausse and F. Meunier, Environ. Prog., 25(4), 327 (2006).CrossRefGoogle Scholar
  36. 36.
    B.-K. Na, K.-K. Koo, H.-M. Eum, H. Lee and H. Song, Korean J. Chem. Eng., 18(2), 220 (2001).CrossRefGoogle Scholar
  37. 37.
    Y. Wang and M. D. LeVan, J. Chem. Eng. Data, 54(10), 2839 (2009).CrossRefGoogle Scholar
  38. 38.
    X. Xu, C. Song, J.M. Andrésen, B.G. Miller and A.W. Scaroni, Micropor. Mesopor. Mater., 62(1–2), 29 (2003).CrossRefGoogle Scholar
  39. 39.
    H. Yoshitake, T. Yokoi and T. Tatsumi, Chem. Mater., 14(11), 4603 (2002).CrossRefGoogle Scholar
  40. 40.
    C. E. Powell and G. G. Qiao, J. Membr. Sci., 279(1–2), 1 (2006).CrossRefGoogle Scholar
  41. 41.
    G. Illing, K. Hellgardt, R. J. Wakeman and A. Jungbauer, J. Membr. Sci., 184(1), 69 (2001).CrossRefGoogle Scholar
  42. 42.
    Z.-K. Xu, C. Dannenberg, J. Springer, S. Banerjee and G. Maier, J. Membr. Sci., 205(1–2), 23 (2002).CrossRefGoogle Scholar
  43. 43.
    B. Tantekin-Ersolmaz, Ç. Atalay-Oral, M. Tatlýer, A. Erdemenatalar, B. Schoeman and J. Sterte, J. Membr. Sci., 175(2), 285 (2000).CrossRefGoogle Scholar
  44. 44.
    S. Husain and W. J. Koros, J. Membr. Sci., 288(1–2), 195 (2007).CrossRefGoogle Scholar
  45. 45.
    D. Luebke, C. Myers and H. Pennline, Energy Fuels, 20(5), 1906 (2006).CrossRefGoogle Scholar
  46. 46.
    S. Li, Z. Wang, C. Zhang, M. Wang, F. Yuan, J. Wang and S. Wang, J. Membr. Sci., 436, 121 (2013).CrossRefGoogle Scholar
  47. 47.
    M. Nomura, T. Yamaguchi and S.-i. Nakao, Ind. Eng. Chem. Res., 36(10), 4217 (1997).CrossRefGoogle Scholar
  48. 48.
    V. Sebastián, I. Kumakiri, R. Bredesen and M. Menéndez, J. Membr. Sci., 292(1–2), 92 (2007).CrossRefGoogle Scholar
  49. 49.
    J. Zou and W. S.W. Ho, J. Membr. Sci., 286(1–2), 310 (2006).CrossRefGoogle Scholar
  50. 50.
    A. Wright, V. White, J. Hufton, E. v. Selow and P. Hinderink, Energy Procedia, 1(1), 707 (2009).CrossRefGoogle Scholar
  51. 51.
    P. Kolbitsch, T. Pröll, J. Bolhar-Nordenkampf and H. Hofbauer, Energy Procedia, 1(1), 1465 (2009).CrossRefGoogle Scholar
  52. 52.
    M. Rydén, A. Lyngfelt, T. Mattisson, D. Chen, A. Holmen and E. Bjørgum, Int. J. Greenhouse Gas Control, 2(1), 21 (2008).CrossRefGoogle Scholar
  53. 53.
    J. Ilconich, C. Myers, H. Pennline and D. Luebke, J. Membr. Sci., 298(1–2), 41 (2007).CrossRefGoogle Scholar
  54. 54.
    CO 2 capturing, IEA Greenhouse Gas R&D Programme (2007).Google Scholar
  55. 55.
    H.R. Kim, D. Wang, L. Zeng, S. Bayham, A. Tong, E. Chung, M.V. Kathe, S. Luo, O. McGiveron, A. Wang, Z. Sun, D. Chen and L.-S. Fan, Fuel, 108, 370 (2013).CrossRefGoogle Scholar
  56. 56.
    D. P. Connell, D.A. Lewandowski, S. Ramkumar, N. Phalak, R.M. Statnick and L.-S. Fan, Fuel, 105, 383 (2013).CrossRefGoogle Scholar
  57. 57.
    W. Wang, S. Ramkumar, D. Wong and L.-S. Fan, Fuel, 92(1), 94 (2012).CrossRefGoogle Scholar
  58. 58.
    W. Wang, S. Ramkumar and L.-S. Fan, Fuel, 104, 561 (2013).CrossRefGoogle Scholar
  59. 59.
    H. J. Richter and K. Knoche, ACS Symposium series, 235, 71 (1983).CrossRefGoogle Scholar
  60. 60.
    M. Ishida and H. Jin, Energy, 19(4), 415 (1994).CrossRefGoogle Scholar
  61. 61.
    An assessment of carbon capture technology and research opportunities, GCEP Energy Assessment Analysis, Spring (2005).Google Scholar
  62. 62.
    A. Lyngfelt, B. Kronberger, J. Adanez, J.X. Morin and P. Hurst, The grace project: Development of oxygen carrier particles for chemical-looping combustion. Design and operation of a 10 kW chemical-looping combustor,E. S. Rubin, et al., Elsevier Science Ltd., Oxford (2005).Google Scholar
  63. 63.
    S.Y. Chuang, J. S. Dennis, A. N. Hayhurst and S. A. Scott, Combust. Flame, 154(1–2), 109 (2008).CrossRefGoogle Scholar
  64. 64.
    A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego and P. Gayán, Combust. Flame, 157(3), 602 (2010).CrossRefGoogle Scholar
  65. 65.
    A. Abad, T. Mattisson, A. Lyngfelt and M. Johansson, Fuel, 86(7–8), 1021 (2007).CrossRefGoogle Scholar
  66. 66.
    F. He, H. Wang and Y. Dai, J. Nat. Gas Chem., 16(2), 155 (2007).CrossRefGoogle Scholar
  67. 67.
    A. Abad, T. Mattisson, A. Lyngfelt and M. Rydén, Fuel, 85(9), 1174 (2006).CrossRefGoogle Scholar
  68. 68.
    P. Gayán, L. F. de Diego, F. García-Labiano, J. Adánez, A. Abad and C. Dueso, Fuel, 87(12), 2641 (2008).CrossRefGoogle Scholar
  69. 69.
    M. Ishida, M. Yamamoto and T. Ohba, Energy Convers. Manage., 43(9–12), 1469 (2002).CrossRefGoogle Scholar
  70. 70.
    L. Shen, M. Zheng, J. Xiao and R. Xiao, Combust. Flame, 154(3), 489 (2008).CrossRefGoogle Scholar
  71. 71.
    H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal and T. Mattisson, Chem. Eng. Res. Des., 86(9), 1017 (2008).CrossRefGoogle Scholar
  72. 72.
    H. E. Andrus, J. H. Chiu, P. R. Thibeault and A. Brautsch, Alstom’s calcium oxide chemical looping combustion coal power technology development, 34th International Technical Conference on Clean Coal & Fuel Systems, Florida, USA (2009).Google Scholar
  73. 73.
    J. Yu, A. B. Corripio, D. P. Harrison and R. J. Copeland, Adv. Environ. Res., 7(2), 335 (2003).CrossRefGoogle Scholar
  74. 74.
    B. Erlach, M. Schmidt and G. Tsatsaronis, Energy, 36(6), 3804 (2011).CrossRefGoogle Scholar
  75. 75.
    S. Ma’mum, H. F. Svendsen, K. A. Hoff and O. Juliussen, Selection of new absorbents for carbon dioxide capture, E. S. Rubin, et al., Elsevier Science Ltd., Oxford (2005).Google Scholar
  76. 76.
    A. Bello and R. O. Idem, Ind. Eng. Chem. Res., 45(8), 2569 (2005).CrossRefGoogle Scholar
  77. 77.
    G. S. Goff and G. T. Rochelle, Ind. Eng. Chem. Res., 45(8), 2513 (2005).CrossRefGoogle Scholar
  78. 78.
    A. O. Lawal and R. O. Idem, Ind. Eng. Chem. Res., 45(8), 2601 (2006).CrossRefGoogle Scholar
  79. 79.
    T. Supap, R. Idem, P. Tontiwachwuthikul and C. Saiwan, Ind. Eng. Chem. Res., 45(8), 2437 (2005).CrossRefGoogle Scholar
  80. 80.
    J. Xiao, C.-W. Li and M.-H. Li, Chem. Eng. Sci., 55(1), 161 (2000).CrossRefGoogle Scholar
  81. 81.
    J.-Y. Park, S. J. Yoon and H. Lee, Environ. Sci. Technol., 37(8), 1670 (2003).CrossRefGoogle Scholar
  82. 82.
    E.B. Rinker, S. S. Ashour and O. C. Sandall, Ind. Eng. Chem. Res., 39(11), 4346 (2000).CrossRefGoogle Scholar
  83. 83.
    S. Ma, H. Song, M. Wang, J. Yang and B. Zang, Chem. Eng. Res. Des., 91(7), 1327 (2013).CrossRefGoogle Scholar
  84. 84.
    J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Int. J. Greenhouse Gas Control, 2(1), 9 (2008).CrossRefGoogle Scholar
  85. 85.
    P.D. Jared P. Ciferno and Thomas Tarka, An economic scoping study for CO 2 capture using aqueous ammonia, US DOE/NETL, Pittsburgh, PA (2005).Google Scholar
  86. 86.
    Z. Niu, Y. Guo, Q. Zeng and W. Lin, Fuel Process. Technol., 108, 154 (2013).CrossRefGoogle Scholar
  87. 87.
    K. Han, C. K. Ahn, M. S. Lee, C. H. Rhee, J. Y. Kim and H. D. Chun, Int. J. Greenhouse Gas Control, 14, 270 (2013).CrossRefGoogle Scholar
  88. 88.
    H. Thee, Y. A. Suryaputradinata, K. A. Mumford, K.H. Smith, G. d. Silva, S. E. Kentish and G.W. Stevens, Chem. Eng. J., 210, 271 (2012).CrossRefGoogle Scholar
  89. 89.
    K.H. Smith, C. J. Anderson, W. Tao, K. Endo, K.A. Mumford, S. E. Kentish, A. Qader, B. Hooper and G.W. Stevens, Int. J. Greenhouse Gas Control, 10, 64 (2012).CrossRefGoogle Scholar
  90. 90.
    J. T. Cullinane and G. T. Rochelle, Chem. Eng. Sci., 59(17), 3619 (2004).CrossRefGoogle Scholar
  91. 91.
    A. Kohandaraman, Carbon dioxide capture by chemical absorption: A solvent comparison study, PhD Thesis, MIT, USA (2010).Google Scholar
  92. 92.
    T. Greer, A. Bedelbayev, J. M. Igreja, J. F. Gomes and B. Lie, Environ. Technol., 31(1), 107 (2010).CrossRefGoogle Scholar
  93. 93.
    N.A. Al-Baghli, S. A. Pruess, V. F. Yesavage and M. S. Selim, Fluid Phase Equilibria, 185(1–2), 31 (2001).CrossRefGoogle Scholar
  94. 94.
    F. A. Tobiesen, O. Juliussen and H. F. Svendsen, Chem. Eng. Sci., 63(10), 2641 (2008).CrossRefGoogle Scholar
  95. 95.
    H. M. Kvamsdal, J. P. Jakobsen and K.A. Hoff, Chem. Eng. Process. Process Intensif., 48(1), 135 (2009).CrossRefGoogle Scholar
  96. 96.
    S. A. Jayarathna, B. Lie and M. C. Melaaen, Comput. Chem. Eng., 53, 178 (2013).CrossRefGoogle Scholar
  97. 97.
    S.A. Jayarathna, B. Lie and M. C. Melaaen, Int. J. Greenhouse Gas Control, 14, 282 (2013).CrossRefGoogle Scholar
  98. 98.
    N. Harun, T. Nittaya, P. L. Douglas, E. Croiset and L. A. Ricardez-Sandoval, Int. J. Greenhouse Gas Control, 10, 295 (2012).CrossRefGoogle Scholar
  99. 99.
    S. Posch and M. Haider, Chem. Eng. Res. Des., 91(6), 977 (2013).CrossRefGoogle Scholar
  100. 100.
    J. Gaspar and A.-M. Cormos, Int. J. Greenhouse Gas Control, 8, 45 (2012).CrossRefGoogle Scholar
  101. 101.
    K. Prölβ, H. Tummescheit, S. Velut and J. Åkesson, Energy Procedia, 4, 2620 (2011).CrossRefGoogle Scholar
  102. 102.
    J. Åkesson, C.D. Laird, G. Lavedan, K. Prölβ, H. Tummescheit, S. Velut and Y. Zhu, Chem. Eng. Tech., 35(3), 445 (2012).CrossRefGoogle Scholar
  103. 103.
    A. J. Sexton, Amine oxidation in CO 2 capture processes, PhD Thesis, The University of Texas at Austin (2008).Google Scholar
  104. 104.
    L. Kucka, I. Müller, E.Y. Kenig and A. Górak, Chem. Eng. Sci., 58(16), 3571 (2003).CrossRefGoogle Scholar
  105. 105.
    E.Y. Kenig, R. Schneider and A. Górak, Chem. Eng. Sci., 56(2), 343 (2001).CrossRefGoogle Scholar
  106. 106.
    R. Dugas, P. Alix, E. Lemaire, P. Broutin and G. Rochelle, Energy Procedia, 1(1), 103 (2009).CrossRefGoogle Scholar
  107. 107.
    A. Lawal, M. Wang, P. Stephenson and H. Yeung, Fuel, 88(12), 2455 (2009).CrossRefGoogle Scholar
  108. 108.
    A. Lawal, M. Wang, P. Stephenson, G. Koumpouras and H. Yeung, Fuel, 89(10), 2791 (2010).CrossRefGoogle Scholar
  109. 109.
    A. Lawal, M. Wang, P. Stephenson and O. Obi, Fuel, 101, 115 (2012).CrossRefGoogle Scholar
  110. 110.
    B. Hanley and H. Shethna, Improved mass transfer correlations for random and structured packings, AIChE Spring Meeting & 6th Global Congress on Process Safety (2010).Google Scholar
  111. 111.
    E.Y. Kenig, L. Kucka and A. Górak, Chem. Ing. Tech., 74(6), 745 (2002).CrossRefGoogle Scholar
  112. 112.
    A. Arce, N. Mac Dowell, N. Shah and L. F. Vega, Int. J. Greenhouse Gas Control, 11, 236 (2012).CrossRefGoogle Scholar
  113. 113.
    N. Mac Dowell and N. Shah, Int. J. Greenhouse Gas Control, 13, 44 (2013).CrossRefGoogle Scholar
  114. 114.
    C. Biliyok, A. Lawal, M. Wang and F. Seibert, Int. J. Greenhouse Gas Control, 9, 428 (2012).CrossRefGoogle Scholar
  115. 115.
    G. D. Pirngruber, F. Guillou, A. Gomez and M. Clausse, Int. J. Greenhouse Gas Control, 14, 74 (2013).CrossRefGoogle Scholar
  116. 116.
    P. Mores, N. Scenna and S. Mussati, Int. J. Greenhouse Gas Control, 6, 21 (2012).CrossRefGoogle Scholar
  117. 117.
    G. Valenti, D. Bonalumi and E. Macchi, Fuel, 101, 74 (2012).CrossRefGoogle Scholar
  118. 118.
    S. Freguia and G. T. Rochelle, AIChE J., 49(7), 1676 (2003).CrossRefGoogle Scholar
  119. 119.
    J. M. Plaza, D.V. Wagener and G. T. Rochelle, Energy Procedia, 1(1), 1171 (2009).CrossRefGoogle Scholar
  120. 120.
    I. Halim and R. Srinivasan, A simulation-optimization framework for efficient CO 2 capture using amine absorption, Proceedings of 12 th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, Rome, Italy: Chemical Engineering Transactions (2009).Google Scholar
  121. 121.
    P. Mores, N. Scenna and S. Mussati, Chem. Eng. Res. Des., 89(9), 1587 (2011).CrossRefGoogle Scholar
  122. 122.
    A. B. Rao and E. S. Rubin, Ind. Eng. Chem. Res., 45(8), 2421 (2006).CrossRefGoogle Scholar
  123. 123.
    E. S. Rubin, C. Chen and A. B. Rao, Energy Pol., 35(9), 4444 (2007).CrossRefGoogle Scholar
  124. 124.
    J. Klemeš, I. Bulatov and T. Cockerill, Comput. Chem. Eng., 31(5–6), 445 (2007).CrossRefGoogle Scholar
  125. 125.
    M.R.M. Abu-Zahra, L.H. J. Schneiders, J.P.M. Niederer, P.H.M. Feron and G. F. Versteeg, Int. J. Greenhouse Gas Control, 1(1), 37 (2007).CrossRefGoogle Scholar
  126. 126.
    P. Mores, N. Rodríguez, N. Scenna and S. Mussati, Int. J. Greenhouse Gas Control, 10, 148 (2012).CrossRefGoogle Scholar
  127. 127.
    M. Karimi, M. Hillestad and H. F. Svendsen, Chem. Eng. Res. Des., 89(8), 1229 (2011).CrossRefGoogle Scholar
  128. 128.
    B.A. Oyenekan and G.T. Rochelle, AIChE J., 53(12), 3144 (2007).CrossRefGoogle Scholar
  129. 129.
    M. S. Jassim and G.T. Rochelle, Ind. Eng. Chem. Res., 45(8), 2465 (2005).CrossRefGoogle Scholar
  130. 130.
    L.A. Pellegrini, S. Moioli and S. Gamba, Chem. Eng. Res. Des., 89(9), 1676 (2011).CrossRefGoogle Scholar
  131. 131.
    B.A. Oyenekan and G. T. Rochelle, Ind. Eng. Chem. Res., 45(8), 2457 (2005).CrossRefGoogle Scholar
  132. 132.
    D. H. Van Wagener and G. T. Rochelle, Chem. Eng. Res. Des., 89(9), 1639 (2011).CrossRefGoogle Scholar
  133. 133.
    J. Gáspár and A.-M. Cormoş, Comput. Chem. Eng., 35(10), 2044 (2011).CrossRefGoogle Scholar
  134. 134.
    A. Ghaemi, S. Shahhosseini and M.G. Maragheh, Chem. Eng. J., 149(1–3), 110 (2009).CrossRefGoogle Scholar
  135. 135.
    R. Schneider, F. Sander and A. Górak, Chem. Eng. Process. Process Intensif., 42(12), 955 (2003).CrossRefGoogle Scholar
  136. 136.
    S.A. Jayarathna, B. Lie and M.C. Melaaen, Energy Procedia, 4, 1797 (2011).CrossRefGoogle Scholar
  137. 137.
    H. Chalmers, M. Lucquiaud, J. Gibbins and M. Leach, J. Environ. Eng., 135(6), 449 (2009).CrossRefGoogle Scholar
  138. 138.
    S. Ziaii, G. T. Rochelle and T. F. Edgar, Ind. Eng. Chem. Res., 48(13), 6105 (2009).CrossRefGoogle Scholar
  139. 139.
    S. Ziaii, S. Cohen, G. T. Rochelle, T. F. Edgar and M. E. Webber, Energy Procedia, 1(1), 4047 (2009).CrossRefGoogle Scholar
  140. 140.
    Y.-J. Lin, T.-H. Pan, D.S.-H. Wong, S.-S. Jang, Y.-W. Chi and C.-H. Yeh, Ind. Eng. Chem. Res., 50(3), 1338 (2010).CrossRefGoogle Scholar
  141. 141.
    M. Panahi, M. Karimi, S. Skogestad, M. Hillestad and H. F. Svendsen, Self-optimizing and control structure design for a CO 2 capturing plant, Proceedings of the 2nd Annual Gas Processing Symposium, Amsterdam, Elsevier (2010).Google Scholar
  142. 142.
    A. Behroozsarand and S. Shafiei, J. Nat. Gas Sci. Eng., 2(6), 284 (2010).CrossRefGoogle Scholar
  143. 143.
    M. Panahi and S. Skogestad, Chem. Eng. Process. Process Intensif., 50(3), 247 (2011).CrossRefGoogle Scholar
  144. 144.
    M. Panahi and S. Skogestad, Chem. Eng. Process. Process Intensif., 52, 112 (2012).CrossRefGoogle Scholar
  145. 145.
    H.W. Pennline, D.R. Luebke, K.L. Jones, C.R. Myers, B. I. Morsi, Y. J. Heintz and J. B. Ilconich, Fuel Process. Technol., 89(9), 897 (2008).CrossRefGoogle Scholar
  146. 146.
    D.R.L. Henry W. Pennline, Kenneth L. Jones, Badie I. Morsi, Yannick J. Heintz and Jeffery B. Ilconich, Carbon dioxide cpature and separation techniques for gasification-based power generation point sources, 100th AWMA Annual Conference and Exhibition, Pitssburgh, PA (2007).Google Scholar
  147. 147.
    A.H. William Breckenridge, James O.Y. Ong and Curtis Sharp, Use of SELEXOL process in coke gasification to ammonia project, Gas treating technical paper, Laurance Reid Gas Conditioning Conference, The University of Oklahoma Norman, Oklahoma (2000).Google Scholar
  148. 148.
    D.R. S. Nick Korens and Donald J. Wilhelm, Process screening analysis of alternative gas treating and sulfur removal for gasification, U.S. DOE, NETL Pittsburgh (2002).Google Scholar
  149. 149.
    L. Sun and R. Smith, J. Cleaner Prod., 39, 321 (2013).CrossRefGoogle Scholar
  150. 150.
    A. Padurean, C.-C. Cormos and P.-S. Agachi, Int. J. Greenhouse Gas Control, 7, 1 (2012).CrossRefGoogle Scholar
  151. 151.
    Midwest Geological sequestration consortium (MGSC), National energy technology laboratory (2004).Google Scholar
  152. 152.
    E. Freireich and R. N. Tennyson, Increased natural gas recovery from physical solvent gas treating systems, Proceedings of the Laurance Reid Gas Conditioning Conference, Norman (1977).Google Scholar
  153. 153.
    J. Mak, D. Nielsen and D. Schulte, An update of the Fluor solvent process, Proceedings of hte Laurance Reid Gas Conditioning Conference, Norman (2007).Google Scholar
  154. 154.
    M. Kriebel, Ullmann’s Encyclopedia of Industrial chemistry, Gas Purification, Weinheim, Germany (1989).Google Scholar
  155. 155.
    N. Otter, Carbon dioxide capture and storage, Report of DTI international technology service mission to the USA and Canada, Advanced Power Generation Technology Forum (2001).Google Scholar
  156. 156.
    C.A.-G. Collot, Draft-Prospects for hydrogen from coal, IEA Coal Research, The Clean Coal Centre, UK (2003).Google Scholar
  157. 157.
    M. Gupta, I. Coyle, K. Thambimuthu and C. E. T. Centre, CO 2 Capture Technologies and Opportunities in Canada: “Strawman Document for CO 2 Capture and Storage (CC & S) Technology Roadmap.”, CANMET Energy Technology Centre, Natural Resources Canada (2003).Google Scholar
  158. 158.
    S. Rezvani, Y. Huang, D. McIlveen-Wright, N. Hewitt and J. D. Mondol, Fuel, 88(12), 2463 (2009).CrossRefGoogle Scholar
  159. 159.
    M. Kanniche and C. Bouallou, Appl. Therm. Eng., 27(16), 2693 (2007).CrossRefGoogle Scholar
  160. 160.
    C. Descamps, C. Bouallou and M. Kanniche, Energy, 33(6), 874 (2008).CrossRefGoogle Scholar
  161. 161.
    C.-C. Cormos, Int. J. Hydrog. Energy, 35(14), 7485 (2010).CrossRefGoogle Scholar
  162. 162.
    C. Chen and E. S. Rubin, Energy Pol., 37(3), 915 (2009).CrossRefGoogle Scholar
  163. 163.
    C. Chen, A technical and economic assessment of CO 2 capture technology for IGCC power plants, PhD Thesis, Carnegie Mellon University, Pttsburgh (2005).Google Scholar
  164. 164.
    W. Guo, F. Feng, G. Song, J. Xiao and L. Shen, J. Nat. Gas Chem., 21(6), 633 (2012).CrossRefGoogle Scholar
  165. 165.
    D. P. Harrison, The role of solids in CO 2 capture: A mini review, Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803.Google Scholar
  166. 166.
    B.G. Miller, 10 - CO 2 Capture and Storage, Butterworth-Heinemann, Boston (2011).Google Scholar
  167. 167.
    G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, Adsorption, 14(2–3), 415 (2008).CrossRefGoogle Scholar
  168. 168.
    J. Zhang and P. A. Webley, Environ. Sci. Technol., 42(2), 563 (2008).CrossRefGoogle Scholar
  169. 169.
    J. Zhang, P. Xiao, G. Li and P.A. Webley, Energy Procedia, 1(1), 1115 (2009).CrossRefGoogle Scholar
  170. 170.
    K. T. Chue, J.N. Kim, Y. J. Yoo, S.H. Cho and R. T. Yang, Ind. Eng. Chem. Res., 34(2), 591 (1995).CrossRefGoogle Scholar
  171. 171.
    J.-H. Park, H.-T. Beum, J.-N. Kim and S.-H. Cho, Ind. Eng. Chem. Res., 41(16), 4122 (2002).CrossRefGoogle Scholar
  172. 172.
    T.C. Drage, A. Arenillas, K.M. Smith and C. E. Snape, Micropor. Mesopor. Mater., 116(1–3), 504 (2008).CrossRefGoogle Scholar
  173. 173.
    J. Bonjour, J.-B. Chalfen and F. Meunier, Ind. Eng. Chem. Res., 41(23), 5802 (2002).CrossRefGoogle Scholar
  174. 174.
    M. Clausse, J. Bonjour and F. Meunier, Adsorption, 9(1), 77 (2003).CrossRefGoogle Scholar
  175. 175.
    A.D. E. James A. Ritter, Steven P. Reynolds, Hai Du and Amal Mehrotra, New adsorption cycles for carbon dioxide capture and concentration, University of South Carolina, Department of Chemical Engineering, Columbia, SC 29208 (2009).Google Scholar
  176. 176.
    S. Irene, CO 2 reduction-prospects for coal, IEA-Coal, CCC/26 (1999).Google Scholar
  177. 177.
    M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata and Y. Kageyama, Energy Convers. Manage., 37(6–8), 929 (1996).CrossRefGoogle Scholar
  178. 178.
    C. Stewart and M.-A. Hessami, Energy Convers. Manage., 46(3), 403 (2005).CrossRefGoogle Scholar
  179. 179.
    C. Shen, C.A. Grande, P. Li, J. Yu and A.E. Rodrigues, Chem. Eng. J., 160(2), 398 (2010).CrossRefGoogle Scholar
  180. 180.
    M.G. Plaza, S. García, F. Rubiera, J. J. Pis and C. Pevida, Chem. Eng. J., 163(1–2), 41 (2010).CrossRefGoogle Scholar
  181. 181.
    S. García, M.V. Gil, C. F. Martín, J. J. Pis, F. Rubiera and C. Pevida, Chem. Eng. J., 171(2), 549 (2011).CrossRefGoogle Scholar
  182. 182.
    R.V. Siriwardane, M.-S. Shen, E. P. Fisher and J.A. Poston, Energy Fuel, 15(2), 279 (2001).CrossRefGoogle Scholar
  183. 183.
  184. 184.
    B. P. Spigarelli and S. K. Kawatra, Journal of CO 2 Utilization, 1, 69 (2013).CrossRefGoogle Scholar
  185. 185.
    B. Arstad, H. Fjellvåg, K. O. Kongshaug, O. Swang and R. Blom, Adsorption, 14(6), 755 (2008).CrossRefGoogle Scholar
  186. 186.
    A. R. Millward and O.M. Yaghi, J. Am. Chem. Soc., 127(51), 17998 (2005).CrossRefGoogle Scholar
  187. 187.
    C. Zhao, X. Chen, E. J. Anthony, X. Jiang, L. Duan, Y. Wu, W. Dong and C. Zhao, Prog. Energy Combust. Sci., DOI:10.1016/j.pecs.2013.05.001 (2013).Google Scholar
  188. 188.
    Y. Lara, P. Lisbona, A. Martínez and L. M. Romeo, Energy Procedia, 1(1), 1359 (2009).CrossRefGoogle Scholar
  189. 189.
    S. Lee and J. Kim, Catal. Surv. Asia, 11(4), 171 (2007).CrossRefGoogle Scholar
  190. 190.
    S.C. Lee, B.Y. Choi, T. J. Lee, C.K. Ryu, Y. S. Ahn and J.C. Kim, Catal. Today, 111(3–4), 385 (2006).CrossRefGoogle Scholar
  191. 191.
    S.C. Lee, Y.M. Kwon, C.Y. Ryu, H. J. Chae, D. Ragupathy, S.Y. Jung, J. B. Lee, C. K. Ryu and J.C. Kim, Fuel, 90(4), 1465 (2011).CrossRefGoogle Scholar
  192. 192.
    K. Kim, S. Yang, J.B. Lee, T. H. Eom, C. K. Ryu, S.-H. Jo, Y. C. Park and C.-K. Yi, Int. J. Greenhouse Gas Control, 9, 347 (2012).CrossRefGoogle Scholar
  193. 193.
    A. Iwan, H. Stephenson, W.C. Ketchie and A. A. Lapkin, Chem. Eng. J., 146(2), 249 (2009).CrossRefGoogle Scholar
  194. 194.
    E. Ochoa-Fernández, M. Rønning, T. Grande and D. Chen, Chem. Mater., 18(6), 1383 (2006).CrossRefGoogle Scholar
  195. 195.
    T. Ohashi and K. Nakagawa, MRS Online Proceedings Library, 547, 249 (1998).Google Scholar
  196. 196.
    M. Kato and K. Nakagawa, J. Ceram. Soc. Jpn., 109(1275), 911 (2001).CrossRefGoogle Scholar
  197. 197.
    M. Kato, Nakagawa, K., Ohashi, T., Yoshikawa S., and Essaki, K. U. Patent, US006387845B1 (2002b).Google Scholar
  198. 198.
    K. Essaki, K. Nakagawa, M. Kato and H. Uemoto, J. Chem. Eng. Jpn., 37(6), 772 (2004).CrossRefGoogle Scholar
  199. 199.
    N.K. Essaki Kenji, Kato Masahiro and Uemoto Hideo, J. Chem. Eng. Jpn., 37(6), 772 (2004).CrossRefGoogle Scholar
  200. 200.
    K. Essaki, M. Kato and H. Uemoto, J. Mater. Sci., 40(18), 5017 (2005).CrossRefGoogle Scholar
  201. 201.
    D. Cruz, S. Bulbulian, E. Lima and H. Pfeiffer, J. Solid State Chem., 179(3), 909 (2006).CrossRefGoogle Scholar
  202. 202.
    M. K. a. K. N. Kenji Essaki, J. Ceram. Soc. Jpn., 114(9), 739 (2006).CrossRefGoogle Scholar
  203. 203.
    T. Yamaguchi, T. Niitsuma, B.N. Nair and K. Nakagawa, J. Membr. Sci., 294(1–2), 16 (2007).CrossRefGoogle Scholar
  204. 204.
    K. Essaki, T. Muramatsu and M. Kato, Int. J. Hydrog. Energy, 33(22), 6612 (2008).CrossRefGoogle Scholar
  205. 205.
    M. Olivares-Marín, T.C. Drage and M.M. Maroto-Valer, Int. J. Greenhouse Gas Control, 4(4), 623 (2010).CrossRefGoogle Scholar
  206. 206.
    K. Essaki, T. Muramatsu and M. Kato, Int. J. Hydrog. Energy, 33(17), 4555 (2008).CrossRefGoogle Scholar
  207. 207.
    M. Kato, S. Yoshikawa and K. Nakagawa, J. Mater. Sci. Lett., 21(6), 485 (2002).CrossRefGoogle Scholar
  208. 208.
    B.N. Nair, R. P. Burwood, V. J. Goh, K. Nakagawa and T. Yamaguchi, Prog. Mater Sci., 54(5), 511 (2009).CrossRefGoogle Scholar
  209. 209.
    R. Xiong, Novel inorganic sorbent for high temperature carbon dioxide separation, Master of Science, University of Cincinnate (2003).Google Scholar
  210. 210.
    K. Nakagawa and T. Ohashi, J. Electrochem. Soc., 145(4), 1344 (1998).CrossRefGoogle Scholar
  211. 211.
    M. J. Venegas, E. Fregoso-Israel, R. Escamilla and H. Pfeiffer, Ind. Eng. Chem. Res., 46(8), 2407 (2007).CrossRefGoogle Scholar
  212. 212.
    M. Seggiani, M. Puccini and S. Vitolo, Int. J. Greenhouse Gas Control, 5(4), 741 (2011).CrossRefGoogle Scholar
  213. 213.
    K. Terasaka, Y. Suyama, K. Nakagawa, M. Kato and K. Essaki, Chem. Eng. Technol., 29(9), 1118 (2006).CrossRefGoogle Scholar
  214. 214.
    R.B. Khomane, B.K. Sharma, S. Saha and B.D. Kulkarni, Chem. Eng. Sci., 61(10), 3415 (2006).CrossRefGoogle Scholar
  215. 215.
    Y. Liang, D. P. Harrison, R. P. Gupta, D. A. Green and W. J. McMichael, Energy Fuel, 18(2), 569 (2004).CrossRefGoogle Scholar
  216. 216.
    T.N. David A. Green, Brian S. Turk, Paul Box, Weijiong Li and Raghubir P. Gupta, Carbon dioxide capture from flue gas using dry regenerable sorbents, Research Triangle Institute (2005).Google Scholar
  217. 217.
    G.G. Santillán-Reyes and H. Pfeiffer, Int. J. Greenhouse Gas Control, 5(6), 1624 (2011).CrossRefGoogle Scholar
  218. 218.
    R.R. Kondakindi, G. McCumber, S. Aleksic, W. Whittenberger and M.A. Abraham, Int. J. Greenhouse Gas Control, 15, 65 (2013).CrossRefGoogle Scholar
  219. 219.
    S.C. Lee, H. J. Chae, S. J. Lee, Y.H. Park, C.K. Ryu, C.K. Yi and J. C. Kim, J. Mol. Catal. B: Enzym., 56(2–3), 179 (2009).CrossRefGoogle Scholar
  220. 220.
    S. Lee, Y. Kwon, Y. Park, W. Lee, J. Park, C. Ryu, C. Yi and J. Kim, Top. Catal., 53(7–10), 641 (2010).CrossRefGoogle Scholar
  221. 221.
    S.C. Lee, H. J. Chae, Y. M. Kwon, W. S. Lee, H. S. Nam, S.Y. Jung, J. B. Lee, C. K. Ryu and J. C. Kim, J. Nanoelectron. Optoelectron., 5(2), 212 (2010).CrossRefGoogle Scholar
  222. 222.
    S. Lee, H. Chae, B. Choi, S. Jung, C. Ryu, J. Park, J.-I. Baek, C. Ryu and J. Kim, Korean J. Chem. Eng., 28(2), 480 (2011).CrossRefGoogle Scholar
  223. 223.
    J.B. Lee, T.H. Eom, B. S. Oh, J.-I. Baek, J. Ryu, W. S. Jeon, Y. H. Wi and C. K. Ryu, Energy Procedia, 4, 1494 (2011).CrossRefGoogle Scholar
  224. 224.
    S.C. Lee, Y.M. Kwon, H. J. Chae, S.Y. Jung, J.B. Lee, C.K. Ryu, C. K. Yi and J. C. Kim, Fuel, 104, 882 (2013).CrossRefGoogle Scholar
  225. 225.
    C.-K. Yi, S.-H. Jo, Y. Seo, J.-B. Lee and C.-K. Ryu, Int. J. Greenhouse Gas Control, 1(1), 31 (2007).CrossRefGoogle Scholar
  226. 226.
    Y.C. Park, S.-H. Jo, C.K. Ryu and C.-K. Yi, Energy Procedia, 1(1), 1235 (2009).CrossRefGoogle Scholar
  227. 227.
    Y.C. Park, S.-H. Jo, C.K. Ryu and C.-K. Yi, Energy Procedia, 4, 1508 (2011).CrossRefGoogle Scholar
  228. 228.
    Y. Park, S.-H. Jo, K.-W. Park, Y. Park and C.-K. Yi, Korean J. Chem. Eng., 26(3), 874 (2009).CrossRefGoogle Scholar
  229. 229.
    Y. Seo, S. Jo, C. Ryu and C. Yi, J. Environ. Eng., 135(6), 473 (2009).CrossRefGoogle Scholar
  230. 230.
    O.-a. Jaiboon, B. Chalermsinsuwan, L. Mekasut and P. Piumsomboon, Chem. Eng. J., 219, 262 (2013).CrossRefGoogle Scholar
  231. 231.
    R. Veneman, Z. S. Li, J. A. Hogendoorn, S. R. A. Kersten and D.W. F. Brilman, Chem. Eng. J., 207–208, 18 (2012).CrossRefGoogle Scholar
  232. 232.
    S. Sjostrom and H. Krutka, Fuel, 89(6), 1298 (2010).CrossRefGoogle Scholar
  233. 233.
    S. Kwon, M. Fan, H. F.M. DaCosta, A.G. Russell, K.A. Berchtold and M. K. Dubey, Chapter 10 - CO 2 Sorption, William Andrew Publishing: Boston (2011).Google Scholar
  234. 234.
    F. Rezaei, A. Mosca, P. Webley, J. Hedlund and P. Xiao, Ind. Eng. Chem. Res., 49(10), 4832 (2010).CrossRefGoogle Scholar
  235. 235.
    R. P. Lively, D. P. Leta, B. A. DeRites, R. R. Chance and W. J. Koros, Chem. Eng. J., 171(3), 801 (2011).CrossRefGoogle Scholar
  236. 236.
    Y. Labreche, R. P. Lively, F. Rezaei, G. Chen, C.W. Jones and W. J. Koros, Chem. Eng. J., 221, 166 (2013).CrossRefGoogle Scholar
  237. 237.
    F. Rezaei and P. Webley, Sep. Purif. Technol., 70(3), 243 (2010).CrossRefGoogle Scholar
  238. 238.
    J.H. Drese, S. Choi, R. P. Lively, W. J. Koros, D. J. Fauth, M. L. Gray and C.W. Jones, Adv. Funct. Mater., 19(23), 3821 (2009).CrossRefGoogle Scholar
  239. 239.
    R. P. Lively, R. R. Chance, B. T. Kelley, H.W. Deckman, J. H. Drese, C.W. Jones and W. J. Koros, Ind. Eng. Chem. Res., 48(15), 7314 (2009).CrossRefGoogle Scholar
  240. 240.
    Z. Xiang, D. Cao, J. Lan, W. Wang and D. P. Broom, Energy Environ. Sci., 3(10), 1469 (2010).CrossRefGoogle Scholar
  241. 241.
    H. Gao, S. Pishney and M. J. Janik, Surf. Sci., 609, 140 (2013).CrossRefGoogle Scholar
  242. 242.
    Y. Jing, L. Wei, Y. Wang and Y. Yu, Chem. Eng. J., 220, 264 (2013).CrossRefGoogle Scholar
  243. 243.
    R. S. Pillai, S. A. Peter and R.V. Jasra, Micropor. Mesopor. Mater., 162, 143 (2012).CrossRefGoogle Scholar
  244. 244.
    B. J. Maring and P.A. Webley, Int. J. Greenhouse Gas Control, 15, 16 (2013).CrossRefGoogle Scholar
  245. 245.
    J. Ylätalo, J. Ritvanen, B. Arias, T. Tynjälä and T. Hyppänen, Int. J. Greenhouse Gas Control, 9, 130 (2012).CrossRefGoogle Scholar
  246. 246.
    E. Abbasi, A. Hassanzadeh and J. Abbasian, Fuel, 105, 128 (2013).CrossRefGoogle Scholar
  247. 247.
    K. Nakagawa and T. Ohashi, J. Electrochem. Soc., 145(4), 1344 (1998).CrossRefGoogle Scholar
  248. 248.
    J. Schell, N. Casas and M. Mazzotti, Energy Procedia, 1(1), 655 (2009).CrossRefGoogle Scholar
  249. 249.
    J. R. Moate and M. D. LeVan, Appl. Therm. Eng., 30(6–7), 658 (2010).CrossRefGoogle Scholar
  250. 250.
    Y. S. Yu, W.Q. Liu, H. An, F. S. Yang, G.X. Wang, B. Feng, Z.X. Zhang and V. Rudolph, Int. J. Greenhouse Gas Control, 10, 510 (2012).CrossRefGoogle Scholar
  251. 251.
    N. Casas, J. Schell, L. Joss and M. Mazzotti, Sep. Purif. Technol., 104, 183 (2013).CrossRefGoogle Scholar
  252. 252.
    I. Martínez, G. Grasa, R. Murillo, B. Arias and J. C. Abanades, Chem. Eng. J., 215–216, 174 (2013).CrossRefGoogle Scholar
  253. 253.
    K.A. Berchtold, Novel polymeric-metallic composite membranes for CO 2 separation at elevated temperatures, American Filtration and Separation Society Fall Topical Conference, Pittsburgh, PA (2006).Google Scholar
  254. 254.
    R. Bounaceur, N. Lape, D. Roizard, C. Vallieres and E. Favre, Energy, 31(14), 2556 (2006).CrossRefGoogle Scholar
  255. 255.
    J. C. M. Pires, F. G. Martins, M. C.M. Alvim-Ferraz and M. Simões, Chem. Eng. Res. Des., 89(9), 1446 (2011).CrossRefGoogle Scholar
  256. 256.
    C.A. Scholes, S. E. Kentish and G.W. Stevens, Energy Procedia, 1(1), 311 (2009).CrossRefGoogle Scholar
  257. 257.
    C. A. Scholes, G.W. Stevens and S. E. Kentish, J. Membr. Sci., 350(1–2), 189 (2010).CrossRefGoogle Scholar
  258. 258.
    G. Xomeritakis, C.Y. Tsai, Y.B. Jiang and C. J. Brinker, J. Membr. Sci., 341(1–2), 30 (2009).CrossRefGoogle Scholar
  259. 259.
    T.C. Merkel, H. Lin, X. Wei and R. Baker, J. Membr. Sci., 359(1–2), 126 (2010).CrossRefGoogle Scholar
  260. 260.
    D. Shekhawat, R.D. Luebke and W.H. Pennline, A review of carbon dioxide selective membranes-A topical teport, National Energy Technology Laboratory, United States Department of Energy (2003).CrossRefGoogle Scholar
  261. 261.
    P.H.M. Feron, Carbon dioxide capture: The characterisation of gas separation/removal membrane systems applied to the treatment of flue gases arising from power plant generation using fossiel fuel, IEA/92/08, IEA Greenhouse Gas R&D programme, Cheltenham, UK (1992).Google Scholar
  262. 262.
    O. Falk-Pedersen and H. Dannström, Energy Convers. Manage., 38, Supplement, S81 (1997).CrossRefGoogle Scholar
  263. 263.
    F. Gallucci, E. Fernandez, P. Corengia and M. van Sint Annaland, Chem. Eng. Sci., 92, 40 (2013).CrossRefGoogle Scholar
  264. 264.
    S. Ban and C. Huang, J. Membr. Sci., 417–418, 113 (2012).CrossRefGoogle Scholar
  265. 265.
    M. T. Ho, G.W. Allinson and D. E. Wiley, Ind. Eng. Chem. Res., 47(5), 1562 (2008).CrossRefGoogle Scholar
  266. 266.
    N. S. Siefert and S. Litster, Appl. Energy, 107, 315 (2013).CrossRefGoogle Scholar
  267. 267.
    K. Ramasubramanian, H. Verweij and W. S. Winston Ho, J. Membr. Sci., 421–422, 299 (2012).CrossRefGoogle Scholar
  268. 268.
    R. Koc, N.K. Kazantzis, W. J. Nuttall and Y. H. Ma, J. Loss Prev. Process Ind., 26(3), 468 (2013).CrossRefGoogle Scholar
  269. 269.
    J. Franz, S. Schiebahn, L. Zhao, E. Riensche, V. Scherer and D. Stolten, Int. J. Greenhouse Gas Control, 13, 180 (2013).CrossRefGoogle Scholar
  270. 270.
    A. Hussain and M.-B. Hägg, J. Membr. Sci., 359(1–2), 140 (2010).CrossRefGoogle Scholar
  271. 271.
    B. Belaissaoui, D. Willson and E. Favre, Chem. Eng. J., 211–212, 122 (2012).CrossRefGoogle Scholar
  272. 272.
    L. Zhao, R. Menzer, E. Riensche, L. Blum and D. Stolten, Energy Procedia, 1(1), 269 (2009).CrossRefGoogle Scholar
  273. 273.
    E. Favre, J. Membr. Sci., 294(1–2), 50 (2007).CrossRefGoogle Scholar
  274. 274.
    K. Okabe, H. Mano and Y. Fujioka, Int. J. Greenhouse Gas Control, 2(4), 485 (2008).CrossRefGoogle Scholar
  275. 275.
    B. T. Low, L. Zhao, T. C. Merkel, M. Weber and D. Stolten, J. Membr. Sci., 431, 139 (2013).CrossRefGoogle Scholar
  276. 276.
    D. Bocciardo, M. C. Ferrari and S. Brandani, Procedia Eng., 44, 1278 (2012).CrossRefGoogle Scholar
  277. 277.
    E. S. Rubin, Elem., 4(5), 311 (2008).CrossRefGoogle Scholar
  278. 278.
    R.W. Baker, Recent developments and future directions in membrane modules, 12th Aachener membrane kolloquim, Aachen, Germany (2008).Google Scholar
  279. 279.
    S. Zhou, X. Chen, T. Nguyen, A. K. Voice and G. T. Rochelle, ChemSusChem, 3(8), 913 (2010).CrossRefGoogle Scholar
  280. 280.
    G. T.R. Hongyi Dang, CO 2 absorption rate and solubility in MEA/PZ/water, Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, May 14–17 (2001).Google Scholar
  281. 281.
    P.R. Kevin, T.Y. James and W. P. Henry, Int. J. Environ. Technol. Manage., 4(1/2), 89 (2004).Google Scholar
  282. 282.
    A. Aboudheir, P. Tontiwachwuthikul and R. Idem, Ind. Eng. Chem. Res., 45(8), 2553 (2005).CrossRefGoogle Scholar
  283. 283.
    Y. Liu, L. Zhang and S. Watanasiri, Ind. Eng. Chem. Res., 38(5), 2080 (1999).CrossRefGoogle Scholar
  284. 284.
    F.M. Khan, V. Krishnamoorthi and T. Mahmud, Chem. Eng. Res. Des., 89(9), 1600 (2011).CrossRefGoogle Scholar
  285. 285.
    A. Bedelbayev, Model based control of absorption column for CO 2 capturing, M.Sc. Thesis, 2008, Telemark University College, Porsgrunn, Norway.Google Scholar
  286. 286.
    T. Greer, Modeling and simulation of post combustion CO 2 capturing, M.Sc. Thesis, Telemark University College, Porsgrunn, Norway (2008).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations