Skip to main content
Log in

Optimization of temperature swing strategy for selective cooling crystallization of α-form l-glutamic acid crystals

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

l-glutamic acid can be crystallized as metastable α-form and stable β-form crystal. The α-form is desired because of its prismatic shape. Production of α-form of l-glutamic acid by cooling crystallization is not well-defined and α-form solid is commercially not available. In this study, an optimal cooling strategy to selectively produce large and narrowly distributed α-crystals is found by modeling and optimizing the crystallization and polymorphic transformation of l-glutamic acid. The optimal temperature profile is found to be cooling-heating-cooling concept where short nucleation period is followed by growth period in metastable zone. The obtained α-form of L-glutamic acid by optimal strategy had improved mean size, distribution, and purity compared to constant cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dharmayat, R.B. Hammond, X. Lai, C. Ma, E. Purba, K. J. Roberts, Z.-P. Chen, E. Martin, J. Morris and R. Bytheway, Cryst. Growth Des., 8(7), 2205 (2008).

    Article  CAS  Google Scholar 

  2. K. Srinivasan, J. Cryst. Growth, 311, 156 (2008).

    Article  CAS  Google Scholar 

  3. M. A. O’Mahony, A. Maher, D. M. Croker, Å. C. Rasmuson and B. K. Hodnett, Cryst. Growth Des., 12(4), 1925 (2012).

    Article  Google Scholar 

  4. K. Sypek, I. S. Burns, A. J. Florence and J. Sefcik, Cryst. Growth Des., 12(10), 4821 (2012).

    Article  CAS  Google Scholar 

  5. J. Calderon De Anda, X. Z. Wang, X. Lai and K. J. Roberts, J. Process Contr., 15(7), 785 (2005).

    Article  Google Scholar 

  6. N. Garti and H. Zour, J. Cryst. Growth, 172, 486 (1997).

    Article  CAS  Google Scholar 

  7. M. Kitamura, J. Cryst. Growth, 96, 541 (1989).

    Article  CAS  Google Scholar 

  8. C. Cashell, D. Corcoran and B. K. Hodnett, Chem. Commun., 3, 374 (2003).

    Article  Google Scholar 

  9. C. P. Mark Roelands, J. H. ter Horst, H. J.M. Kramer and P. J. Jansens, AIChE J., 53(2), 354 (2007).

    Article  CAS  Google Scholar 

  10. J. Cornel, C. Lindenberg and M. Mazzotti, Cryst. Growth Des., 9(1), 243 (2009).

    Article  CAS  Google Scholar 

  11. H. Hatakka, H. Alatalo, M. Louhi-Kultanen, I. Lassila and E. Hæggström, Chem. Eng. Technol., 33(5), 751 (2010).

    Article  CAS  Google Scholar 

  12. Y. Mo, L. Dang and H. Wei, Fluid Phase Equilibr., 300, 105 (2011).

    Article  CAS  Google Scholar 

  13. J. Calderon De Anda, X. Z. Wang, X. Lai, K. J. Roberts, K. H. Jennings, M. J. Wilkinson, D. Watson and D. Roberts, AIChE J., 51(5), 1406 (2005).

    Article  Google Scholar 

  14. N. C. S. Kee, R. B. H. Tan and R. D. Braatz, Cryst. Growth Des., 9(7), 3044 (2009).

    Article  CAS  Google Scholar 

  15. D. R. Yang, K. S. Lee, J. S. Lee, S.G. Kim, D. H. Kim and Y. K. Bang, Ind. Eng. Chem. Res., 46, 8158 (2007).

    Article  CAS  Google Scholar 

  16. D.Y. Kim, M. Paul, J.-U. Repke, G. Wozny and D. R. Yang, Korean J. Chem. Eng., 26(5), 1220 (2009).

    Article  CAS  Google Scholar 

  17. J. Worlitschek and M. Mazzotti, Cryst. Growth Des., 4(5), 891 (2004).

    Article  CAS  Google Scholar 

  18. F. Czapla, H. Haida, M. P. Elsner, H. Lorenz and A. Seidel-Morgenstern, Chem. Eng. Sci., 64, 753 (2009).

    Article  CAS  Google Scholar 

  19. J. J. Liu, C.Y. Ma, Y.D. Hu and X. Z. Wang, Chem. Eng. Res. Des., 88, 437 (2010).

    Article  CAS  Google Scholar 

  20. C. Y. Ma, X. Z. Wang and K. J. Roberts, Adv. Powder Technol., 18(6), 707 (2007).

    Article  CAS  Google Scholar 

  21. C. Y. Ma and X. Z. Wang, Chem. Eng. Sci., 70, 22 (2012).

    Article  CAS  Google Scholar 

  22. S. Kumar and D. Ramkrishna, Chem. Eng. Sci., 51(8), 1333 (1996).

    Article  CAS  Google Scholar 

  23. S. Kumar and D. Ramkrishna, Chem. Eng. Sci., 52(24), 4659 (1997).

    Article  CAS  Google Scholar 

  24. A. Gerstlauer, A. Mitrovic, S. Motz and E.-D. Gilles, Chem. Eng. Sci., 56, 2553 (2001).

    Article  CAS  Google Scholar 

  25. B. J. McCoy, J. Colloid Interface Sci., 240, 139 (2001).

    Article  CAS  Google Scholar 

  26. B. J. McCoy, Chem. Eng. Sci., 57, 2279 (2002).

    Article  CAS  Google Scholar 

  27. G. Madras and B. J. McCoy, Powder Technol., 143–144, 297 (2004).

    Article  Google Scholar 

  28. F. Puel, G. Févotte and J. P. Klein, Chem. Eng. Sci., 58, 3715 (2003).

    Article  CAS  Google Scholar 

  29. F. Puel, G. Févotte and J. P. Klein, Chem. Eng. Sci., 58, 3729 (2003).

    Article  CAS  Google Scholar 

  30. R. Gunawan, I. Fusman and R.D. Braatz, AIChE J., 50, 2738 (2004).

    Article  CAS  Google Scholar 

  31. Q. Hu, S. Rohani, D. X. Wang and A. Jutan, AIChE J., 50(8), 1786 (2004).

    Article  CAS  Google Scholar 

  32. Q. Hu, S. Rohani and A. Jutan, AIChE J., 51(11), 3000 (2005).

    Article  CAS  Google Scholar 

  33. F. Févotte and G. Févotte, Chem. Eng. Sci., 65, 3191 (2010).

    Article  Google Scholar 

  34. L. F. L.R. Silva, R.C. Rodrigues, J. F. Mitre and P. L.C. Lage, Comput. Chem. Eng., 34, 286 (2010).

    Article  CAS  Google Scholar 

  35. N. A. F. A. Samad, R. Singh, G. Sin, K.V. Gernaey and R. Gani, Comput. Chem. Eng., 35, 828 (2011).

    Article  Google Scholar 

  36. J. Schöll, D. Bonalumi, L. Vicum, M. Mazzotti and M. Müller, Cryst. Growth Des., 6(4), 881 (2006).

    Article  Google Scholar 

  37. M.W. Hermanto, N. C. Kee, R. B. H. Tan and M.-S. Chiu, AIChE J., 54(12), 3248 (2008).

    Article  CAS  Google Scholar 

  38. S. Qamar, S. Noor and A. Seidel-Morgenstern, Ind. Eng. Chem. Res., 49, 4940 (2010).

    Article  CAS  Google Scholar 

  39. Z. K. Nagy, E. Aamir and C.D. Rielly, Cryst. Growth Des., 11, 2205 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Ryook Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeom, S., Yun, H. & Yang, D.R. Optimization of temperature swing strategy for selective cooling crystallization of α-form l-glutamic acid crystals. Korean J. Chem. Eng. 30, 1836–1842 (2013). https://doi.org/10.1007/s11814-013-0124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0124-6

Key words

Navigation