Skip to main content
Log in

Effects of surfactant contamination on oxygen mass transfer in fine bubble aeration process

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of anionic, cationic, and non-ionic surfactants (SDS, SDBS, CTAB and Tween20) on oxygen mass transfer (OMT) in fine bubble aeration systems were investigated. The overall gas-liquid volumetric mass transfer coefficient (K L a), specific interfacial area (a), and liquid-side mass transfer coefficient (K L ) parameters were used to assess the influence of the surfactants. At the same concentration, the different surfactants were observed to influence the K L a value as follows: K L a (SDBS)>K L a (SDS)>K L a (tween20)>K L a (CTAB). For all used surfactants, the overall trends showed a significant decrease in the K L a value at low concentrations (0–5mg/L), while the K L a value recovered somewhat at high concentrations (10–20mg/L). The decrease to the KL value was found to be much larger than increase in the a value in the presence of surfactants. Furthermore, a simple model was established that provides an OMT prediction for different surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Rice and S.W. Howell, AIChE J., 32, 1377 (1986).

    Article  CAS  Google Scholar 

  2. D. J. Reardon, Civ. Eng., 65, 54 (1995).

    Google Scholar 

  3. Y. Fayollea, A. Cockxb, S. Gillota, M. Roustan and A. Héduit, Chem. Eng. J., 62, 7163 (2007).

    Article  Google Scholar 

  4. P. Painmanakul and G. Hébrard, Chem. Eng. Res. Des., 86, 1207 (2008).

    Article  CAS  Google Scholar 

  5. V. L. Burris and J. C. Little, Water Sci. Technol., 37, 293 (1988).

    Google Scholar 

  6. D. F. McGinnis and J. C. Little, Water Res., 36, 4627 (2002).

    Article  CAS  Google Scholar 

  7. D. Rosso, Ph.D thesis, University of California Los Angeles (2005).

    Google Scholar 

  8. D. Rosso, D.L. Huo and M.K. Stenstrom, Chem. Eng. Sci., 66, 5500 (2006a).

    Google Scholar 

  9. D. Rosso, D. L. Huo and M. K. Water Res., 40, 1397 (2006b).

    Article  CAS  Google Scholar 

  10. J. M. Chern, S. R. Chou and C. H. Shang, Water Res., 35, 3041 (2001).

    Article  CAS  Google Scholar 

  11. A. Tzounakos, D. G. Karamanev, A. Margaritis and M. A. Bergougnou, Ind. Eng. Chem. Res., 43, 5790 (2004).

    Article  CAS  Google Scholar 

  12. S. S. Alves, S. P. Orvalho and J. M.T. Vasconcelos, Chem. Eng. Sci., 60, 1 (2005).

    Article  CAS  Google Scholar 

  13. P. Painmanakul, K. Loubière, G. Hébrard, M. Mietton-Peuchot and M. Roustan, Chem. Eng. Sci., 60, 6480 (2005).

    Article  CAS  Google Scholar 

  14. R. Sardeing, P. Painmanakul and G. Hébrard, Chem. Eng. Sci., 61, 6249 (2006).

    Article  CAS  Google Scholar 

  15. X. L. Chen, H.C. Wang, L. Qi, T. Luo, H. T. Fan and M. D. Li, Acta Sci. Circum., 33, 2 (2013).

    Google Scholar 

  16. A. X. Jiang, B. Xia and Y. X. Li, Safety and Environ. J., 4, 2 (2004).

    Google Scholar 

  17. H. C. Wang, Municipal Eng. Tech., 1, 30 (1997).

    Google Scholar 

  18. L. P. Liu, Environ. Sci. Survey, 29, 1 (2010).

    Google Scholar 

  19. P. Painmanakul, K. Loubière, G. Hébrard and P. Buffière, Chem. Eng. Proc., 43, 1347 (2004).

    Article  CAS  Google Scholar 

  20. http://www.seas.ucla.edu/stenstro/Bubble.pdf.

  21. S. J. Zhang, Research on the three-dimensional numerical simulation of bubble dynamics, Hohai University (2006).

    Google Scholar 

  22. ASCE, American Society of Civil Engineers-ASCE/EWRI 2-06, New York (2007).

    Google Scholar 

  23. K. Loubière and G. Hébrard, Chem. Eng. Pro., 43, 1361 (2004).

    Article  Google Scholar 

  24. W.W. Eckenfelder and E. L. Barnhart, AIChE J., 17, 631 (1961).

    Article  Google Scholar 

  25. C. Liu, L. Zhang, J. L. Yang, J. B. Guo and Z.X. Li, Energy Environ. Tech., 2, 531 (2009).

    Google Scholar 

  26. D. Rosso and K. M. Stenstrom, Water Environ. Res. Foundation, 6, 4853 (2006).

    Google Scholar 

  27. M. K. Stenstrom and R. G. Gilbert, Water Res., 15, 643 (1981).

    Article  CAS  Google Scholar 

  28. M. Wagner and R. J. Popel, Water Sci. Technol., 34, 249 (1996).

    CAS  Google Scholar 

  29. T. L. Huo, Ph.D thesis, University of California (1998).

  30. A. García-Abuín, D. Gómez-Díaz, J. M. Navaza and B. Sanjurjo, Chem. Eng. Sci., 65, 4484 (2010).

    Article  Google Scholar 

  31. R. Higbie, Trans. Am. Inst. Chem. Eng., 31, 365 (1935).

    CAS  Google Scholar 

  32. N. Frössling, Gerlands Beitr. Geophys, 52, 170 (1938).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Qi or Hongchen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Liu, Gh., Fan, H. et al. Effects of surfactant contamination on oxygen mass transfer in fine bubble aeration process. Korean J. Chem. Eng. 30, 1741–1746 (2013). https://doi.org/10.1007/s11814-013-0092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0092-x

Key words

Navigation