Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1171–1180 | Cite as

Improvement in CO2 absorption and reduction of absorbent loss in aqueous NH3/triethanolamine/2-amino-2-methyl-1-propanol blends

  • Min-Kyoung Kang
  • Soo-Bin Jeon
  • Min-Ho Lee
  • Kwang-Joong OhEmail author
Review Paper


Changes in the CO2 absorption rates and capacities of the absorbent 2-amino-2-methyl-1-propanol (AMP), blended with NH3 and other additives, were investigated toward performance improvement. The NH3-blended absorbent removed CO2 more efficiently than the AMP absorbent alone. However, absorbent loss through NH3 evaporation was observed under these conditions. A second absorbent, the tertiary amine triethanolamine (TEA), which has a low vapor pressure, was selected and blended with the NH3/AMP system to reduce NH3 evaporation. Its effects on NH3 loss and the absorption rate and capacity of the NH3/AMP system were investigated, and the optimum blending ratios were determined. In addition, the absorbent blend at the optimum blending ratio was compared to AMP alone and the commercially available absorbent monoethanolamine at the same weight ratio. The thermal stabilities of the absorbents, under conditions used in the CO2 absorption process, were compared by thermogravimetric analysis.

Key words

CO2 Capture CO2 Absorption Absorbent Loss Blending Absorbent Ratio Thermogravimetric Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Henni, J. Li and P. Tontiwachwuthikul, Ind. Eng. Chem. Res., 47, 2213 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Morimoto, K. Taki and T. Maruyama, Oct. 5, RITE (2002).Google Scholar
  3. 3.
    A. Bandyopadhyay, Clean Technologies & Environmental Policy, 13, 269 (2011).CrossRefGoogle Scholar
  4. 4.
    P. V. Danckwerts, Gas-liquid reactions, McGraw-Hill (1970).Google Scholar
  5. 5.
    J. H. Kim, J. H. Lee, K. R. Jang and J.G. Shim, J. Kor. Soc. Environ. Eng., 31, 883 (2009).Google Scholar
  6. 6.
    B. P. Mandal and S.S. Bandyopadhyay, Chem. Eng. Sci., 61, 5440 (2006).CrossRefGoogle Scholar
  7. 7.
    W.-J. Choi, B.-M. Min, J.-B. Seo, S.-W. Park and K.-J. Oh, Ind. Eng. Chem. Res., 48, 4022 (2009).CrossRefGoogle Scholar
  8. 8.
    S.-M. Yih and K.-P. Shen, Ind. Eng. Chem. Res., 27, 2237 (1998).CrossRefGoogle Scholar
  9. 9.
    M. Caplow, Journal of American Chemical Society, 90, 6795 (1968).CrossRefGoogle Scholar
  10. 10.
    P. V. Danckwerts, Chem. Eng. Sci., 34, 443 (1979).CrossRefGoogle Scholar
  11. 11.
    H. L. Bai and A. C. Yeh, Ind. Eng. Chem. Res., 36, 2490 (1997).CrossRefGoogle Scholar
  12. 12.
    Y. F. Diao, X.Y. Zheng, B. S. He, C. H. Chen and X.C. Xu, Energy Convers. Manage., 45, 2283 (2004).CrossRefGoogle Scholar
  13. 13.
    A. C. Yeh and H. Bai, Sci. Total En Viron., 228, 121 (1999).CrossRefGoogle Scholar
  14. 14.
    T. L. Donaldson and T. N. Nguyen, Ind. Eng. Chem. Fundam., 19, 260 (1980).CrossRefGoogle Scholar
  15. 15.
    P. Singh and G. F. Versteeg, Process Saf. Environ. Prot., 86, 347 (2008).CrossRefGoogle Scholar
  16. 16.
    D. Bonenfant, M. Mimeault and R. Hausler, Ind. Eng. Chem. Res., 42, 3179 (2003).CrossRefGoogle Scholar
  17. 17.
    B.G. Choi, G. H. Kim, K. B. Yi and J.-N. Kim, Korean J. Chem. Eng., 29, 478 (2012).CrossRefGoogle Scholar
  18. 18.
    S.-T. Kim, J.-W. Kang, J.-s. Lee and B.-M. Min, Korean J. Chem. Eng., 28, 2275 (2011).CrossRefGoogle Scholar
  19. 19.
    K.-J. Oh, W.-J. Choi, S.-S. Lee, J.-J. Lee and B.-H. Shon, J. Korean Society of Environmental Engineers, 24, 985 (2002).Google Scholar
  20. 20.
    J.-H. Kim, J.-H. Lee, K.-R. Jang and J.-G. Shim, Korean Society of Environmental Engineers, 31, 883 (2009).Google Scholar
  21. 21.
    W.-J. Choi, J.-S. Lee, K.-H. and B.-M. Min, Korean Chem. Eng. Res., 49, 256 (2011).Google Scholar
  22. 22.
    G.W. Xu, C. F. Zhang, S. J. Qin and Y.W. Wang, Ind. Eng. Chem. Res., 31, 921 (1992).CrossRefGoogle Scholar
  23. 23.
    D.-H. Lee, W.-J. Choi, S.-J. Moon, S.-H. Ha, I.-G. Kim and K.-J. Oh, Korean J. Chem. Eng., 25, 279 (2008).CrossRefGoogle Scholar
  24. 24.
    K.-H. Han, J.-S. Lee and B.-M. Min., Korean Chem. Eng. Res., 45, 197 (2007).Google Scholar
  25. 25.
    O. F. Dawodu and A. Meisen, J. Chem. Eng. Date, 39, 548 (1994).CrossRefGoogle Scholar
  26. 26.
    J.-K. You, H.-S. Park, W.-H. Hong, J.-K. Park and J.-N. Kim, Korean Chem. Eng. Res., 45, 258 (2007).Google Scholar
  27. 27.
    A. Muhammad, M. I. Abdul Mutalib, C. D. Wilfred, T. Murugesan and A. Shafeeq, J. Chem. Eng. Data, 54, 2317 (2009).CrossRefGoogle Scholar
  28. 28.
    H. Kierzkowska-Pawlak and A. Chacuk, Chem. Eng., 168, 367 (2011).CrossRefGoogle Scholar
  29. 29.
    J. H. Choi, S.G. Oh, M. Jo, Y. I. Yoon, S.K. Jeong and S. C. Nam, Chem. Eng. Sci., 72, 87 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Min-Kyoung Kang
    • 1
  • Soo-Bin Jeon
    • 1
  • Min-Ho Lee
    • 2
  • Kwang-Joong Oh
    • 1
    Email author
  1. 1.Department of Environmental EngineeringPusan National UniversityBusanKorea
  2. 2.Department of Environment & Fire Team-Ulsan PlantHyundai Motor CompanyUlsanKorea

Personalised recommendations