Skip to main content
Log in

Removal of humic acid from water using adsorption coupled with electrochemical regeneration

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel and economic waste water treatment technology comprised of adsorption coupled with electrochemical regeneration was introduced at the University of Manchester in 2006. An electrically conducting adsorbent material called Nyex™ 1000 (Graphite intercalation based material) was developed for the said purpose. This adsorbent material delivered significantly lower adsorption capacity for the removal of a number of organic pollutants. With the aim to expand the scope of newly developed adsorbent material called Nyex™ 2000, we studied the adsorption of humic acid followed by electrochemical regeneration. Nyex™ 2000 is a highly electrically conducting material with an adsorption capacity almost twice that of Nyex™ 1000 (intercalation based graphite compound) for humic acid. The adsorption of humic acid onto both Nyex™ adsorbents was found to be fast enough keeping almost the same kinetics with approximately 50% of the adsorption capacity being achieved within the first twenty minutes. The parameters affecting the regeneration efficiency, including the treatment time, charge passed and current density, were investigated. The regeneration efficiency at around 100% for Nyex™ 1000 & 2000 adsorbents saturated with humic acid was obtained using the charge passed of 8 and 22 Cg−1 at a current density of 7mA cm−2 during a treatment time of 30minutes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Hseu and H. L. Yang, Environ. Res., 89(2), 131 (2002).

    Article  CAS  Google Scholar 

  2. T. Hartono, S. Wang, Q. Ma and Z. Zhu, J. Colloid Interface Sci., 333, 114 (2009).

    Article  CAS  Google Scholar 

  3. Retrieved from http://www.humichealth.info/hungtoxicity.html (2012).

  4. R. Ronny, What effect does humic acid have on sea water? Retrieved from http://www.ehow.com/info_10002888_effect-humic-acid-seawater.html (2012).

    Google Scholar 

  5. C. A. Murray and S. A. Parsons, Water Sci. Technol., 49, 267 (2004).

    CAS  Google Scholar 

  6. J. Yu, D. D. Sun and J. H. Tay, Water Sci. Technol., 47, 89 (2003).

    CAS  Google Scholar 

  7. J. E. Vanbenschoten and J.K. Edzwald, Water Res., 24, 1527 (1990).

    Article  CAS  Google Scholar 

  8. J. K. Edzwald, Water Sci. Technol., 27, 21 (1993).

    CAS  Google Scholar 

  9. J. E. Vanbenschoten and J.K. Edzwald, Water Res., 24, 1527 (1990).

    Article  CAS  Google Scholar 

  10. M. A. Zulfiqar, Int. J. Chem. Environ. Biol. Sci., 1, 1 (2013).

    Google Scholar 

  11. D. Doulia, C. Leodopoulos, K. Gimouhopoulos and F. Rigas, J. Colloid Interface Sci., 340, 2 (2009).

    Article  CAS  Google Scholar 

  12. N. Khumsiri, R. Jindal, N. Yoswathana and W. Jonglertjunya, Kasets J. (Nat. Sci.), 44 (2010).

    Google Scholar 

  13. G. M. Walker and L. R. Weatherley, Environ. Pollut., 99, 133 (1998).

    Article  CAS  Google Scholar 

  14. N.W. Brown, E. P. L. Roberts, A. Chasiotis, T. Cherdron and N. Sanghrajaka, Water Res., 38, 3067 (2004).

    Article  CAS  Google Scholar 

  15. Y. C. Sharma, U. S. N. Upadhyay and F. Gode, J. Appl. Sci. Environ. Sanit., 4, 21 (2009).

    Google Scholar 

  16. C. O. Ania, J.B. Parra and J. A. Menendez, Water Res., 41, 3299 (2007).

    Article  CAS  Google Scholar 

  17. R.V. Shende and V.V. Mahajani, J. Waste Manage., 22, 73 (2002).

    Article  CAS  Google Scholar 

  18. G. Zhang, S. Wang and Z. E. Liu, Eng. Sci., 20, 57 (2003).

    Google Scholar 

  19. R.M. Narbaitz and J. Cen, Water Res., 28, 1771 (1994).

    Article  CAS  Google Scholar 

  20. H. Zhang, L. Ye and H. Zhong, J. Chem. Technol. Biotechnol., 77, 1246 (2002).

    Article  CAS  Google Scholar 

  21. R.M. Narbaitz and A. K. Jashni, Environ. Technol., 30, 27 (2009).

    Article  CAS  Google Scholar 

  22. N.W. Brown, E. P. L. Roberts, A. A. Garforth and R. A.W. Dryfe, Water Sci. Technol., 49, 219 (2004).

    CAS  Google Scholar 

  23. N.W. Brown, E. P. L. Roberts, A. A. Garforth and R. A.W. Dryfe, Electrochim. Acta, 49, 3269 (2004).

    Article  CAS  Google Scholar 

  24. N.W. Brown and E. P. L. Roberts, J. Appl. Electrochem., 37, 1329 (2007).

    Article  CAS  Google Scholar 

  25. H. M. A. Asghar, E. P. L. Roberts, S. N. Hussain, A.K. Campen and N.W. Brown, J. Appl. Electrochem., 42, 797 (2012).

    Article  CAS  Google Scholar 

  26. H. M. A. Asghar, Development of graphitic adsorbents for water treatment using adsorption and electrochemical regeneration, Ph.D Thesis, University of Manchester, Manchester, UK (2011).

    Google Scholar 

  27. H. P. Boehm, Carbon, 32, 759 (1994).

    Article  CAS  Google Scholar 

  28. C. K. Yoo, D. S. Kim, J. H. Cho, S.W. Choi and I. B. Lee, Korean J. Chem. Eng., 18, 4 (2001).

    Article  Google Scholar 

  29. A. Bayat, S. F. Aghamiri and A. Mohem, Iran J. Chem. Eng., 5, 51 (2008).

    Google Scholar 

  30. Z. Shengtao, G. Anyan, G. Huanfang and C. Xiangqian, Int. J. Ind. Chem., 2, 123 (2011).

    Google Scholar 

  31. T. Asakawa, K. Ogino and K. Yamabe, Chem. Soc. Jpn., 58, (1985).

  32. V. Hernandez and S. Hawang, Explosives sorption to coal ash aggregates. World of coal ash conference, May, 4–7 Lexington, KY, USA (2009).

    Google Scholar 

  33. X. U. Tao and L. I. U. Xiaoqin, Chinese J. Chem. Eng., 16, 401 (2008).

    Article  Google Scholar 

  34. J. Lach, E. Okoniewska, E. Necjaz and M. Kacprzak, Desalination, 206, 259 (2007).

    Article  CAS  Google Scholar 

  35. F. A. Pavan, A.C. Mazzocato and Y. Gushikem, Bioresour. Technol., 99, 3162 (2008).

    Article  CAS  Google Scholar 

  36. C. Namasivayam, M. D. Kumar, K. Selvi, R. A. Begum, T. Vanathi and R. T. Yamuna, Biomass Bio Energy, 21 (2001).

    Google Scholar 

  37. C.Y. Chen, P. Wang and Y. Zhuang, J. Environ. Sci., 17, 6 (2005).

    Google Scholar 

  38. N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam and S. Sivanesan, J. Hazard. Mater., 151 (2008).

    Google Scholar 

  39. P. Vijayalakshmi, V. S. S. Bala, K.V. Thiruvengadaravi, P. Panneerselvam, M. Palanichamy and S. Sivanesan, Sep. Sci. Technol., 46 (2011).

    Google Scholar 

  40. S. K. Kam and J. Gregory, Water Res., 35, 15 (2001).

    Article  Google Scholar 

  41. S.N. Hussain, Water treatment using graphite adsorbents with electrochemical regeneration, PhD Thesis, University of Manchester, Manchester, UK (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Anwaar Asghar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asghar, H.M.A., Hussain, S.N., Roberts, E.P.L. et al. Removal of humic acid from water using adsorption coupled with electrochemical regeneration. Korean J. Chem. Eng. 30, 1415–1422 (2013). https://doi.org/10.1007/s11814-013-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0066-z

Key words

Navigation