Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1241–1247 | Cite as

Removal of nitric oxide and sulfur dioxide from flue gases using a FeII-ethylenediamineteraacetate solution

  • Hai-Song Zhu
  • Yan-Peng Mao
  • Yu Chen
  • Xiang-Li LongEmail author
  • Wei-Kang Yuan
Environmental Engineering


The combined absorption of NO and SO2 into the Fe(II)-ethylenediamineteraacetate(EDTA) solution has been realized. Activated carbon is used to catalyze the reduction of FeIII-EDTA to FeII-EDTA to maintain the ability to remove NO with the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO2 dissolved into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, pH value, temperature of absorption and regeneration, O2 partial pressure, sulfite/bisulfite and chloride concentration on the combined elimination of NO and SO2 with FeII-EDTA solution coupled with the FeII-EDTA regeneration catalyzed by activated carbon. The experimental results indicate that NO removal efficiency increases with activated carbon mass. There is an optimum pH of 7.5 for this process. The NO removal efficiency increases with the liquid flow rate but it is not necessary to increase the liquid flow rate beyond 25 ml min−1. The NO removal efficiency decreases with the absorption temperature as the temperature is over 35 °C. The Fe2+ regeneration rate may be speeded up with temperature. The NO removal efficiency decreases with O2 partial pressure in the gas streams. The NO removal efficiency is enhanced with the sulfite/bisulfite concentration. Chloride does not affect the NO removal. Ca(OH)2 and MgO slurries have little influence on NO removal. High NO and SO2 removal efficiencies can be maintained at a high level for a long period of time with this heterogeneous catalytic process.

Key words

FeII-EDTA Nitric Oxide Absorption Activated Carbon Sulfur Dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Pereira and M. D. Amiridis, In NO x control from stationary sources, C. J. Pereira, M.D. Amiridis, Eds., ACS Symp. Ser. 552; American Chemical Society, Washington, DC, 552, 1 (1995).Google Scholar
  2. 2.
    F. Nakahjima and I. Hamada, Catal. Today, 29, 109 (1996).CrossRefGoogle Scholar
  3. 3.
    B.C. Huang, R. Huang, D. J. Jin and D. Q. Ye, Catal. Today, 126, 279 (2007).CrossRefGoogle Scholar
  4. 4.
    K. Rahkamaa-Tolonen and R. L. Keiski, Catal. Today, 100, 217 (2005).CrossRefGoogle Scholar
  5. 5.
    A. Raj, T. H. N. Le, S. Kaliaguine and A. Auroux, Appl. Catal. B: Envirn., 15, 259 (1998).CrossRefGoogle Scholar
  6. 6.
    S.G. Chang, D. Littlejohn and D. K. Liu, Ind. Eng. Chem. Res., 27, 2156 (1988).CrossRefGoogle Scholar
  7. 7.
    E. K. Pham and S. G. Chang, Nature, 369, 139 (1994).CrossRefGoogle Scholar
  8. 8.
    N. Y. Hishinuma, R. Kaji, H. Akimoto, F. Nakajima, T. Mor, T. Kamo, Y. Arikawa and S. Nozawa, Bull. Chem. Soc. Jpn., 52, 2863 (1979).CrossRefGoogle Scholar
  9. 9.
    E. Sada and H. Kumazawa, Ind. Eng. Chem. Pro. Des. Dev., 19, 377 (1980).CrossRefGoogle Scholar
  10. 10.
    S.-M. Yih and C.-W. Lii, J. Chem. Eng., 42, 145 (1989).CrossRefGoogle Scholar
  11. 11.
    F. Gambardella, J.G.M. Winkelman and H. J. Heeres, Chem. Eng. Sci., 61, 6880 (2006).CrossRefGoogle Scholar
  12. 12.
    L. Wang, W.R. Zhao and Z.B. Wu, J. Chem. Eng., 132, 227 (2007).CrossRefGoogle Scholar
  13. 13.
    Y. Kurimura, R. Ochiai and N. Matsuura, Bull. Chem. Soc. Jpn., 41, 2234 (1968).CrossRefGoogle Scholar
  14. 14.
    V. Zang and R. V. Eldik, Inorg. Chem., 29, 1705 (1990).CrossRefGoogle Scholar
  15. 15.
    H. J. Wubs and A. A. C. M. Beenackers, Ind. Eng. Chem. Res., 32, 2580 (1993).CrossRefGoogle Scholar
  16. 16.
    M. Teramoto and S.-I. Hiramimne, J. Chem. Eng., 11, 450 (1978).CrossRefGoogle Scholar
  17. 17.
    Z.B. Wu, L. Wang and W.R. Zhao, J. Chem. Eng., 140, 130 (2008).CrossRefGoogle Scholar
  18. 18.
    F. Gambardella and L.M. H. J. Heeres, J. Chem. Eng., 116, 67 (2006).CrossRefGoogle Scholar
  19. 19.
    P. Maas, P. Brink, B. Klapwijk and P. Lens, Chemosphere, 7, 243 (2009).CrossRefGoogle Scholar
  20. 20.
    I. Manconi, P. Maas and P. N. L. Lens, Nitric Oxide, 15, 40 (2006).CrossRefGoogle Scholar
  21. 21.
    L. Singoredjo, F. Kapteijn, J. A. Moulijn, J.-M. Martín-Martínez and H.-P. Boehm, Carbon, 31, 213 (1993).CrossRefGoogle Scholar
  22. 22.
    P.M. Alvárez, F. J. Beltrán, F. J. Masa and J. P. Pocostales, Appl. Catal. B: Environ., 92, 293 (2009).Google Scholar
  23. 23.
    J. Muñiz, G. Marbán and A. B. Fuertes, Appl. Catal. B: Environ., 27, 27 (2000).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Hai-Song Zhu
    • 1
  • Yan-Peng Mao
    • 1
  • Yu Chen
    • 1
  • Xiang-Li Long
    • 1
    Email author
  • Wei-Kang Yuan
    • 1
  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiP. R. China

Personalised recommendations