Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1295–1300 | Cite as

Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid

  • Xiangting WuEmail author
  • Aiyin Wang
  • Xiaojie Zheng
  • Guoxing Li
  • Xinjiao Dong
  • Mingjiang Wu
Separation Technology, Thermodynamics
  • 147 Downloads

Abstract

Poly-γ-glutamic acid (γ-PGA) is a novel polyamino acid formed through microorganism fermentation and biosynthesis. In the present test, membrane (PGA-C) formation by γ-PGA and collodion was performed by using 0.1% glutaraldehyde as a cross-linking agent. A study was conducted on the PGA-C adsorption of Cu2+, specifically the related adsorption equilibrium and kinetics, desorption and regeneration. The results show that with an initial solution pH=5.5 and at 318 K, the static adsorption isotherm behavior of PGA-C is in compliance with the Langmuir model and is beneficial to the adsorption of the metal. Meanwhile, with the reaction lasting for 30min, adsorption equilibrium was reached with a maximum adsorption capacity up to 7.431 mg/g. The entire reaction process follows the pseudo-second-order kinetics. By using PGA-C, good regeneration results were obtained after adsorption-generation-adsorption cycling with an HCl solution (0.1 mol/L) as regeneration liquid.

Key words

γ-PGA Cu2+ Collodion Adsorption Kinetics Optimal Conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Volesky, B. Davis and R. H. S. F. Vieira, Water Res., 34, 4270 (2000).CrossRefGoogle Scholar
  2. 2.
    M.W. Wan, C. C. Kan and C. H. Lin, Chia Nan Annual Bulletin, 33, 96 (2007).Google Scholar
  3. 3.
    I.-L. Shih, P.-J. Wu and C.-J. Shieh, Process. Biochemistry, 40, 2827 (2005).CrossRefGoogle Scholar
  4. 4.
    T. Kurniawan, G. Chan and W. Lo, Chem. Eng. J., 118, 83 (2006).CrossRefGoogle Scholar
  5. 5.
    D. Sud, G. Mahajan and M. P. Kaur, Bioresour. Technol., 99, 6017 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Ashiuchi and H. Misono, Appl. Microbiol. Biotechnol., 59, 9 (2002).CrossRefGoogle Scholar
  7. 7.
    L. Shihi, Y. T. Van and Y. N. Chang, Enzyme Microb. Technol., 31, 213 (2002).CrossRefGoogle Scholar
  8. 8.
    S. M. Nomanbhay K. Palanisamy, Electronic J. Biotechnol., 8, 43 (2005).Google Scholar
  9. 9.
    J. Toth, Colloid Interface Sci., 55, 1 (1995).CrossRefGoogle Scholar
  10. 10.
    S. K. Parida, S. Dash, S. Patel and B.K. Mishra, Colloid Interface Sci., 121, 77 (2006).CrossRefGoogle Scholar
  11. 11.
    M. Jaroniec, Colloid Interface Sci., 28, 149 (1983).Google Scholar
  12. 12.
    O. Moradi, H. Modarress and M. Noroozi, Colloid Interface Sci., 271, 16 (2004).CrossRefGoogle Scholar
  13. 13.
    Y. J. Wang, J. H. Chen, Y. X. Cui, S.Q. Wang and D.M. Zhou, Hazard. Mater., 162, 1185 (2009).CrossRefGoogle Scholar
  14. 14.
    Z. Adamczyk and P. Warszyhski, Colloid Interface Sci., 63, 41 (1996).CrossRefGoogle Scholar
  15. 15.
    B. Stephen Inbaraj, J. S. Wang and J. F. Lu, Bioresour. Technol., 100, 200 (2009).CrossRefGoogle Scholar
  16. 16.
    H. A. Elliott and C. P. Huang, Water Res., 15, 849 (1981).CrossRefGoogle Scholar
  17. 17.
    M. Ajmal, A. H. Khan and S. Ahmad, Water Res., 32, 3085 (1998).CrossRefGoogle Scholar
  18. 18.
    B. S. Inbaraj and N. Sulochana, Hazard. Mater. B, 133, 283 (2006).CrossRefGoogle Scholar
  19. 19.
    D. Sarkar, E. Essington and K. C. Misra, Soil Sci. Soc. Am., 64, 1968 (2000).CrossRefGoogle Scholar
  20. 20.
    K. A. Krishnan and T. S. Anirudhan, Hazard. Mater. B, 92, 161 (2002).CrossRefGoogle Scholar
  21. 21.
    G. H. Ho, T. I. Ho, K. H. Hsieh, Y. C. Su, P.Y. Lin, J. Yang, K. H. Yang and S. C. Yang, Chin. Chem. Soc., 53, 1363 (2006).Google Scholar
  22. 22.
    L. Shihi and Y. T. Van, Bioresour. Technol., 79, 207 (2001).CrossRefGoogle Scholar
  23. 23.
    T. Altun and E. Pehlivan, Clean Soil Air Water, 35, 601 (2007).CrossRefGoogle Scholar
  24. 24.
    B. S. Inbaraj, J. T. Chien, G. H. Ho, J. Yang and B. H. Chen, Biochem. Eng., 31, 204 (2006).CrossRefGoogle Scholar
  25. 25.
    B. S. Inbaraj and N. Sulochana, Bioresour. Technol., 94, 49 (2004).CrossRefGoogle Scholar
  26. 26.
    T. S. Anirudhan, P. Senan and M. R. Unnithan, Sep. Purif. Technol., 52, 512 (2007).CrossRefGoogle Scholar
  27. 27.
    G. McKay, H. S. Blair and J. R. Gardener, J. Appl. Polym. Sci., 27, 3043 (1982).CrossRefGoogle Scholar
  28. 28.
    Y. S. Ho and G. McKay, Process. Biochem., 38, 1047 (2003).CrossRefGoogle Scholar
  29. 29.
    B. S. Inbaraj, C. P. Chiu, G. H. Ho, J. Yang and B. H. Chen, Bioresour. Technol., 99, 1026 (2008).CrossRefGoogle Scholar
  30. 30.
    J. Febrianto, A.N. Kosasih and J. Sunarso, J. Hazard. Mater., 162, 616 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Xiangting Wu
    • 1
    Email author
  • Aiyin Wang
    • 2
  • Xiaojie Zheng
    • 3
  • Guoxing Li
    • 2
  • Xinjiao Dong
    • 1
  • Mingjiang Wu
    • 1
  1. 1.College of Life and Environmental ScienceWenzhou UniversityWenzhouP. R. China
  2. 2.College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouP. R. China
  3. 3.Wenzhou Vocational College of Technology and ScienceWenzhouP. R. China

Personalised recommendations