Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1248–1256 | Cite as

Kinetic and equilibrium studies on the biosorption of textile dyes onto Plantago ovata seeds

  • Manickam Periyaraman Premkumar
  • Vaidyanathan Vinoth Kumar
  • Ponnusamy Senthil Kumar
  • Palanichamy Baskaralingam
  • Vasanthakumar Sathyaselvabala
  • Thangaraj Vidhyadevi
  • Subramanian SivanesanEmail author
Environmental Engineering


The powdered seeds of Plantago ovata (PSPO) were utilized for the removal of Malachite Green (MG) and Rose Bengal (RB) dyes from aqueous media by batch adsorption. The Fourier transform infra red spectroscopy (FTIR) results showed that both the dyes were adsorbed between the cellulose matrices, and this has been verified from the intensifying and narrowing aromatic C-H bending vibration. The morphology of the dye laden adsorbent was studied by scanning electron microscopy (SEM), which showed that the dyes were adsorbed between the cellulose matrices of the adsorbent. The PSPO was found to be very effective for the removal of MG and RB at pH 7, and equilibrium was attained within 200 min. The kinetic study indicated that the rate limiting step for MG and RB adsorption may be chemisorption and intraparticle diffusion. Adsorption equilibrium data were fitted to Langmuir, Freundlich, Redlich-Peterson and Temkin adsorption isotherms. It is inferred from the equilibrium studies that the adsorption of MG follows the Freundlich isotherm and the adsorption of RB follows the Langmuir isotherm. The maximum monolayer adsorption capacity of the PSPO was found to be 86.23 mg/g for MG and 81.23 mg/g for RB, respectively.

Key words

Adsorption Equilibrium Kinetics Malachite Green Plantago ovate Rose Bengal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. F. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol, 77, 247 (2001).CrossRefGoogle Scholar
  2. 2.
    J. Kent, Van Nostrand Reinhold, New York, N. Y. 7th Ed., 676 (1974).Google Scholar
  3. 3.
    P. J. Halliday and S. Beszedits, Can. Tex. J, 103, 78 (1986).Google Scholar
  4. 4.
    G. S. Gupta, G. Prasad and V. N. Singh, Water Res, 24, 45 (1990).CrossRefGoogle Scholar
  5. 5.
    M. Neamtu, A. Yediler, I. Siminiceanu, M. Macoveanu and A. Kellrup, Dyes Pigm, 60, 61 (2004).CrossRefGoogle Scholar
  6. 6.
    I. K. Kapdan and R. Ozturk, J. Hazard. Mater, 123, 217 (2005).CrossRefGoogle Scholar
  7. 7.
    R. K. Wahi, W.W. Yu, Y. P. Liu, M. L. Meija, J.C. Falkner, W. Nolte and V. L. Colvin, J. Molecular Catal. A: Chem, 242, 48 (2005).CrossRefGoogle Scholar
  8. 8.
    V. V. B. Rao and S. R. M. Rao, Chem. Eng. J, 116, 77 (2006).CrossRefGoogle Scholar
  9. 9.
    C. S. Keng, Z. Zainal and A. H. Abdullah, J. Anal. Sci, 12, 451 (2008).Google Scholar
  10. 10.
    I. Langmuir, J. Ame. Chem. Soc, 40, 1361 (1918).CrossRefGoogle Scholar
  11. 11.
    H.M. F. Freundlich, J. Phys. Chem, 57, 385 (1906).Google Scholar
  12. 12.
    O. Redlich and D. L. Peterson, J. Phys. Chem, 63, 1024 (1959).CrossRefGoogle Scholar
  13. 13.
    M. J. Temkin and V. Pyzhev, Acta Physicochim. URSS, 12, 217 (1940).Google Scholar
  14. 14.
    P. K. Baskaran, B. R. Venkatraman and S. Arivoli, E-J. Chem, 8, 9 (2011).CrossRefGoogle Scholar
  15. 15.
    B. H. Hameed and M. I. El-Khaiary, J. Hazard. Mater, 157, 344 (2008).CrossRefGoogle Scholar
  16. 16.
    K. V. Kumar, Dyes Pigm, 74, 595 (2007).CrossRefGoogle Scholar
  17. 17.
    K. V. Kumar and S. Sivanesan, Dyes Pigm, 72, 124 (2007).CrossRefGoogle Scholar
  18. 18.
    G. Annadurai, R. S. Juang and D. J. Lee, J. Hazard. Mater, B92, 263 (2002).CrossRefGoogle Scholar
  19. 19.
    N. Kannan and M.M. Sundaram, Dyes Pigm, 51, 25 (2001).CrossRefGoogle Scholar
  20. 20.
    M. P. Hema and Martin Deva Prasath, J. Sci. Eng, 34, 31 (2009).Google Scholar
  21. 21.
    F. Banat, S. Al-Asheh and L. Al-Makhadmeh, Process. Biochem, 39, 193 (2003).CrossRefGoogle Scholar
  22. 22.
    Mittal and Alok, J. Hazard. Mater, 133, 196 (2006).CrossRefGoogle Scholar
  23. 23.
    T. Santhi, S. Manonmani, T. Smitha and K. Mahalakshmi, J. Chem, 2, 813 (2009).Google Scholar
  24. 24.
    I.D. Mall, V. C. Srivastava, N. K. Agarwal and I.M. Mishra, Colloids Surf, 264, 17 (2005).CrossRefGoogle Scholar
  25. 25.
    S. Lagergren, Kungliga Svenska Vetensk Handl, 24, 1 (1898).Google Scholar
  26. 26.
    Y. S. Ho and G. McKay, Process Biochem, 34, 451 (1999).CrossRefGoogle Scholar
  27. 27.
    W. J. Weber and J.C. Morriss, J. Sanit. Eng. Div. Am. Soc. Civ. Eng, 89, 31 (1963).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Manickam Periyaraman Premkumar
    • 1
  • Vaidyanathan Vinoth Kumar
    • 1
  • Ponnusamy Senthil Kumar
    • 2
  • Palanichamy Baskaralingam
    • 1
  • Vasanthakumar Sathyaselvabala
    • 1
  • Thangaraj Vidhyadevi
    • 1
  • Subramanian Sivanesan
    • 1
    Email author
  1. 1.Department of Applied Science & Technology, Environmental Management Laboratory, AC College of TechnologyAnna UniversityChennaiIndia
  2. 2.Department of Chemical EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations