Skip to main content

Advertisement

Log in

Phase-change core/shell structured nanofibers based on eicosane/poly(vinylidene fluoride) for thermal storage applications

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We fabricated eicosane/poly(vinylidene fluoride) (PVDF) core/shell nanofibers by melt coaxial electrospinning as potential heat-storage applications. Eicosane, a hydrocarbon with melting point near the human body temperature and high latent heat, was chosen as the core material. Melted eicosane and PVDF solutions were coaxially electrospun using a double spinneret, in which melted eicosane was fed at 0.090–0.210 mL/h while the feeding rate of PVDF solution was maintained constant at 1.500 mL/h. The applied voltage and working distance were maintained constant at 12 kV and 17 cm, respectively. Good core/shell structure of nanofibers was observed at core feed rates of 0.090–0.180mL/h by transmission electron microscopy. Differential scanning calorimetry and thermogravimetric analysis values indicated good thermal stability and high energy-storage capacity of the obtained nanofibers. The highest amount of eicosane encapsulated in the electrospun core/shell nanofibers reached 32.5 wt% at core feed rate 0.180 mL/h and had a latent heat of 77 J/g at melting point 39.2 °C. These shape-stabilized core/shell composite nanofibers showed good thermoregulating properties and had sufficiently high tensile strength for potential energy-storage applications, especially in smart textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Mohammed, M. K. Amar, K.R. Siddique Ali and A. H. Said, Energy Convers. Manage., 45, 1597 (2004).

    Article  Google Scholar 

  2. Z. Belen, M.M. Jose, F. C. Luisa and M. Harald, Appl. Therm. Eng., 23, 251 (2003).

    Article  Google Scholar 

  3. K. Ravindra, K. M. Manoj, K. Rohitash, G. Deepak, P. K. Sharma, B. B. Tak and S. R. Meena, Def. Sci. J., 61, 576 (2011).

    Google Scholar 

  4. S. Mondal, Appl. Therm. Eng., 28, 1536 (2008).

    Article  CAS  Google Scholar 

  5. M. F. Demirbas, Energy Source, Part B, 1, 85 (2006).

    Article  CAS  Google Scholar 

  6. C.C. Chang, Y. L. Tsai, J. J. Chiu and H. Chen, J. Appl. Polym. Sci., 112, 1850 (2009).

    Article  CAS  Google Scholar 

  7. A. Sari, C. Alkan, A. Karaipekli and O. Uzun, Sol. Energy, 83, 1757 (2009).

    Article  CAS  Google Scholar 

  8. L. S. Silva, J. Tsavalas, D. Sundberg, P. SaÌnchez and J. F. Rodriguez, Ind. Eng. Chem. Res., 49(23), 12204 (2010).

    Article  Google Scholar 

  9. Z. Yang, Z. Wei, L. Leping, L. Wujun and X. Yi, Adv. Sci. Lett., 4(3), 933 (2011).

    Article  Google Scholar 

  10. L. Sánchez, P. Sánchez, A. Lucas, M. Carmona and J. F. Rodríguez, Colloid. Polym. Sci., 285(12), 1377 (2007).

    Article  Google Scholar 

  11. P. Sánchez, M.V. Sánchez-Fernandez, A. Romero, J. F. Rodríguez and L. Sánchez-Silva, Thermochim. Acta, 498(1–2), 16 (2010).

    Article  Google Scholar 

  12. L. X. Zheng, T. Z. Cheng, Z.G. Long, S. L. Xian and Z. Tao, Chinese J. Chem., 22, 411 (2004).

    Google Scholar 

  13. Y. Shin, D. Yoo and K. Son, J. Appl. Polym. Sci., 96(5), 2005 (2005).

    Article  CAS  Google Scholar 

  14. Y. Shin, D. Yoo and K. Son, J. Appl. Polym. Sci., 97(3), 910 (2005).

    Article  CAS  Google Scholar 

  15. H. Shim, E. A. McCullough and B.W. Jones, Text. Res. J., 71(6), 495 (2001).

    Article  CAS  Google Scholar 

  16. C. Chen, L. Wang and Y. Huang, Mater. Lett., 62, 3515 (2008).

    Article  CAS  Google Scholar 

  17. C. Chen, L. Wang and Y. Huang, Chem. Eng. J., 150, 269 (2009).

    Article  CAS  Google Scholar 

  18. C. Chen, L. Wang and Y. Huang, Polymer, 48, 5202 (2007).

    Article  CAS  Google Scholar 

  19. S. Alay, F. Göde and C. Alkan, Fibers and Polymers, 11(8), 1089 (2010).

    Article  CAS  Google Scholar 

  20. T. T. T. Nguyen, J.G. Lee and J. S. Park, Macromol. Res., 19, 370 (2011).

    Article  CAS  Google Scholar 

  21. C. V. Do, T. T. T. Nguyen and J. S. Park, Sol. Energy Mater. Sol. Cells, 104, 131 (2012).

    Article  Google Scholar 

  22. J. T. McCann, M. Marquez and Y. Xia, Nano Lett., 6, 2868 (2006).

    Article  CAS  Google Scholar 

  23. F. Salaün, E. Devaux, S. Bourbigot and P. Rumeau, Text. Res. J., 80(3), 195 (2010).

    Article  Google Scholar 

  24. S. S. Deveci and G. Basal, Colloid. Polym. Sci., 287(12), 1455 (2009).

    Article  CAS  Google Scholar 

  25. G. Basal, S. S. Deveci1, D. Yalcin and O. Bayraktar, J. Appl. Polym. Sci., 121(4), 1885 (2011).

    Article  CAS  Google Scholar 

  26. L. X. Zheng, T. Z. Cheng, Z.G. Long, S. L. Xian and Z. Tao, Chinese J. Chem., 22, 411 (2004).

    Google Scholar 

  27. J. E. Díaz, A. Barrero, M. Márquez and I.G. Loscertales, Adv. Funct. Mater., 16, 2110 (2006).

    Article  Google Scholar 

  28. C. Alkan, A. Sar, A. Karaipekli and O. Uzun, Sol. Energy Mater. Sol. Cells, 93(1), 143 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Seo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, C.V., Nguyen, T.T.T. & Park, J.S. Phase-change core/shell structured nanofibers based on eicosane/poly(vinylidene fluoride) for thermal storage applications. Korean J. Chem. Eng. 30, 1403–1409 (2013). https://doi.org/10.1007/s11814-013-0046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0046-3

Key words

Navigation