Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1187–1194 | Cite as

Modelling and analysis of pre-combustion CO2 capture with membranes

  • Ji Hye Choi
  • Myung-June ParkEmail author
  • JeongNam Kim
  • Youngdeok Ko
  • See-Hoon Lee
  • Ilhyun Baek
Process Systems Engineering, Process Safety


A pre-combustion CO2 capture system was modelled with three different membranes. It comprised an amine absorber for the elimination of H2S, high- and low-temperature water gas shift reactors for the conversion of CO to CO2 and a membrane to keep over 90% of the CO2 in the retentate. The absorber and equilibrium reactors were modelled using rigorous models, while the partial least squares model was used for three different types of membranes to predict the experimental results. The effectiveness of the modelling of the reactors and membranes was tested through comparison of simulated results with experimental data. The effects of operating pressure and membrane type are also discussed, and it was found that using a smaller membrane under high pressure lowered the membrane’s cost but also lowered energy recovery.

Key words

Pre-combustion CO2 Capture Membrane Modelling Partial Least Squares (PLS) Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Davison, Energy, 32, 1163 (2007).CrossRefGoogle Scholar
  2. 2.
    H. J. Herzog, Environ. Sci. Techonol., 35, 148 (2001).CrossRefGoogle Scholar
  3. 3.
    J. Franz and V. Scherer, J. Membr. Sci., 359, 173 (2010).CrossRefGoogle Scholar
  4. 4.
    J. Gibbins and H. Chalmers, Energ. Policy, 36, 4317 (2008).CrossRefGoogle Scholar
  5. 5.
    A. A. Olajire, Energy, 35, 2610 (2010).CrossRefGoogle Scholar
  6. 6.
    W. J. Koros and G. K. Fleming, J. Membr. Sci., 83, 1 (1993).CrossRefGoogle Scholar
  7. 7.
    M. Bracht, P. T. Alderliesten, R. Kloster, R. Pruschek, G. Haupt, E. Xue, J. R.H. Ross, M.K. Koukou and N. Papayannakos, Energy Convers. Mange., 38, S159 (1997).CrossRefGoogle Scholar
  8. 8.
    S. Shelly, Chem. Eng. Prog., 105, 42 (2009).Google Scholar
  9. 9.
    C. A. Scholes, K. H. Smith, S. E. Kentish and G.W. Stevens, Int. J. Greenh. Gas Con., 4, 739 (2010).CrossRefGoogle Scholar
  10. 10.
    P. Geladi and B. R. Kowalski, Anal. Chim. Acta, 185, 1 (1986).CrossRefGoogle Scholar
  11. 11.
    M.A. Sharaf, D. L. Illman and B. R. Kowalski, Chemometrics, Wiley, New York (1986).Google Scholar
  12. 12.
    G. Baffi, E.B. Martin and A. J. Morris, Comput. Chem. Eng., 23, 395 (1999).CrossRefGoogle Scholar
  13. 13.
    M.-J. Park, M. T. Dokucu and F. J. Doyle III, Ind. Eng. Chem. Res., 43, 7227 (2004).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Ji Hye Choi
    • 1
  • Myung-June Park
    • 1
    Email author
  • JeongNam Kim
    • 2
  • Youngdeok Ko
    • 2
  • See-Hoon Lee
    • 3
  • Ilhyun Baek
    • 2
  1. 1.Department of Chemical EngineeringAjou UniversitySuwonKorea
  2. 2.Greenhouse Gas CenterKorea Institute of Energy Research (KIER)DaejeonKorea
  3. 3.Department of Resources and Energy EngineeringChonbuk National UniversityJeonbukKorea

Personalised recommendations