Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1235–1240 | Cite as

Increased hydrazine during partial nitritation process in upflow air-lift reactor fed with supernatant of anaerobic digester effluent

  • Jeongdong Choi
  • Sokhee Jung
  • Young-Ho AhnEmail author
Environmental Engineering
  • 211 Downloads

Abstract

The optimal balance of ammonium and nitrite is essential for successful operation of the subsequent anammox process. We conducted a partial nitritation experiment using an upflow air-lift reactor to provide operational parameters for achieving the optimal ratio of ammonium to nitrite, by feeding supernatant of anaerobic digester effluent, highnitrogen containing rejection water. Semi-continuous operation results show that HRT should be set between 15 and 17 hours to achieve the optimum ration of 1.3 of NO2-N/NH4-N. In the UAR, nitritation was the dominant reaction due to high concentration of ammonia and low biodegradable organics. The influent contained low concentrations of hydroxylamine and hydrazine. However, hydrazine increased during partial nitritation by ∼60–130% although there was no potential anammox activity in the reactor. The partial nitritation process successfully provided the ratio of nitrogen species for the anammox reaction, and relived the nitrite restraint on the anammox activity by increasing hydrazine concentration.

Key words

Hydrazine Hydroxylamine Nitrite Partial Nitritation Anammox 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bagchi, R. Biswas and T. Nandy, Crit. Rev. Environ. Sci. Technol., 42, 1353 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Joss, D. Salzgeber, J. Eugster, R. Konig, K. Rottermann, S. Burger, P. Fabijan, S. Leumann, J. Mohn and H. Siegrist, Environ. Sci. Technol., 43, 5301 (2009).CrossRefGoogle Scholar
  3. 3.
    S.V. Kalyuzhnyi, M. A. Gladchenko, H. Kang, A. Mulder and A. Versprille, Water Sci. Technol., 57, 323 (2008).CrossRefGoogle Scholar
  4. 4.
    U. van Dongen, M. S. Jetten and M. C. van Loosdrecht, Water Sci. Technol., 44, 153 (2001).Google Scholar
  5. 5.
    M. S. Jetten, M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen and M. Strous, Curr. Opin. Biotechnol., 12, 283 (2001).CrossRefGoogle Scholar
  6. 6.
    C. Fux, M. Boehler, P. Huber, I. Brunner and H. Siegrist, J. Biotechnol., 99, 295 (2002).CrossRefGoogle Scholar
  7. 7.
    Y.-H. Ahn, Process Biochem., 41, 1709 (2006).CrossRefGoogle Scholar
  8. 8.
    D. J. Kim, D. H. Ahn and D. I. Lee, Korean J. Chem. Eng., 22, 85 (2005).CrossRefGoogle Scholar
  9. 9.
    H. Nam, T. Lee, S. Park and T. Park, Korean J. Chem. Eng., 21, 635 (2004).CrossRefGoogle Scholar
  10. 10.
    J.M. Yoon, D. J. Kim and I. K. Yoo, Korean Chem. Eng. Res., 42, 200 (2006).Google Scholar
  11. 11.
    J. S. Chang, G. C. Cha and D. J. Kim, Korean Chem. Eng. Res., 40, 114 (2002).Google Scholar
  12. 12.
    E. Bettazzi, S. Caffaz, C. Vannini and C. Lubello, Process Biochem., 45, 573 (2010).CrossRefGoogle Scholar
  13. 13.
    APHA/AWWA/WEF (American Public Health Association, American Water Works Association, Environment Federation), Standards for examination of water and waste water, 21st Ed. United Book Press, Baltimore, MD (2005).Google Scholar
  14. 14.
    K. Buchauer, Water S.A., 24, 49 (1998).Google Scholar
  15. 15.
    N. Chamchoi, S. Nitisoravut and J. E. Schmidt, Bioresour. Technol., 99(9), 3331 (2008).CrossRefGoogle Scholar
  16. 16.
    J. van de Vossenberg, J. E. Rattray, W. Geerts, B. Kartal, L. van Niftrik, E. G. van Donselaar, J. S. Sinninghe Damsté, M. Strous and M. S. M. Jetten, Environ. Microbiol., 10, 3120 (2008).CrossRefGoogle Scholar
  17. 17.
    B. Kartal, M. Koleva, R. Arsov, W. van der Star, M. S.M. Jetten and M. Strous, J. Biotechnol., 126, 546 (2006).CrossRefGoogle Scholar
  18. 18.
    Y.-H. Ahn and H.-C. Choi, Process Biochem., 41, 1945 (2006).CrossRefGoogle Scholar
  19. 19.
    M. S.M. Jetten, M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen and M. Strous, Curr. Opin. Biotechnol., 12, 283 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Strous and M. S. Jetten, Annu. Rev. Microbiol., 58, 99 (2004).CrossRefGoogle Scholar
  21. 21.
    E. Bettazzi, S. Caffaz, C. Vannini and C. Lubello, Process Biochem., 45, 573 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Otte, J. Schalk, J.G. Kuenen and M. S. Jetten, Appl. Microbiol. Biotechnol., 51, 255 (1999).CrossRefGoogle Scholar
  23. 23.
    H. R. Harhangi, M. Le Roy, T. van Alen, B. L. Hu, J. Groen, B. Kartal, S.G. Tringe, Z. X. Quan, M. S. Jetten and H. J. Op den Camp, Appl. Environ. Microbiol., 78, 752 (2011).CrossRefGoogle Scholar
  24. 24.
    S.M. Lee, J. Y. Jung and Y. C. Chung, Biotechnol. Lett., 22, 991 (2000).CrossRefGoogle Scholar
  25. 25.
    S.A. Hawkins, K.G. Robinson, A.C. Layton and G. S. Sayler, Environ. Eng. Sci., 23, 521 (2006).CrossRefGoogle Scholar
  26. 26.
    J. Guo, Y. Peng, S. Wang, Y. Zheng, H. Huang and Z. Wang, Bioresour. Technol., 100, 2796 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  1. 1.Department of Civil & Environmental EngineeringUniversity of AlbertaAlbertaCanada
  2. 2.Sustainability Consulting GroupSamsung SDSYeoksam, SeoulKorea
  3. 3.School of Civil and Environmental EngineeringYonsei UniversitySeoulKorea
  4. 4.Department of Civil EngineeringYeungnam UniversityGyungsanKorea

Personalised recommendations