Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1207–1212 | Cite as

Analysis of onset of buoyancy-driven convection in a fluid layer saturated in anisotropic porous media by the relaxed energy method

  • Min Chan KimEmail author
Transport Phenomena

Abstract

A theoretical analysis of buoyancy-driven instability under transient basic fields is conducted in an initially quiescent, fluid-saturated, horizontal porous layer. Darcy’s law is used to explain characteristics of fluid motion, and the anisotropy of permeability is considered. Under the Boussinesq approximation, the energy stability equations are derived following the energy formulation. The stability equations are analyzed numerically under the relaxed energy stability concept. For the various anisotropic ratios, the critical times are predicted as a function of the Darcy-Rayleigh number, and the critical Darcy-Rayleigh number is also obtained. The present predictions are compared with existing theoretical ones.

Key words

Buoyancy-driven Convection Anisotropic Porous Medium Energy Mmethod 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ennis-King, I. Preston and L. Paterson, Phys. Fluids, 17, 084107 (2005).CrossRefGoogle Scholar
  2. 2.
    J. Ennis-King and L. Paterson, SPE J., 84344-PA (2005).Google Scholar
  3. 3.
    A. Riaz, M. Hesse, H. A. Tchelepi and F. M. Orr Jr., J. Fluid Mech., 548, 87 (2006).CrossRefGoogle Scholar
  4. 4.
    H. Hassanzadeh, N. Pooladi-Darvish and D. Keith, Trans. Porous Med., 65, 193 (2006).CrossRefGoogle Scholar
  5. 5.
    X. Xu, S. Chen and Z. Zhang, Adv. Water Res., 29, 397 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Rapaka, R. J. Pawar, P. H. Stauffer, D. Zhang and S. Chen, J. Fluid Mech., 641, 227 (2009).CrossRefGoogle Scholar
  7. 7.
    J. Hidalgo and J. Carrera, J. Fluid Mech., 640, 441 (2009).CrossRefGoogle Scholar
  8. 8.
    A.C. Slim and T. S. Ramakrishnan, Phys. Fluids, 22, 124103 (2010).CrossRefGoogle Scholar
  9. 9.
    M. C. Kim and C. K. Choi, Phys. Fluids, 24, 044102 (2012).CrossRefGoogle Scholar
  10. 10.
    M. T. Elenius, J.M. Nordbotten and H. Kalisch, IMA J. Appl. Math., 77, 771 (2012).CrossRefGoogle Scholar
  11. 11.
    C.W. Horton and F. T. Rogers, J. Appl. Phys., 6, 367 (1945).CrossRefGoogle Scholar
  12. 12.
    E. R. Lapwood, Proc. Cambridge Phil. Soc., 44, 508 (1948).CrossRefGoogle Scholar
  13. 13.
    J.-P. Caltagirone, Q. J. Mech. Appl. Math., 33, 47 (1980).CrossRefGoogle Scholar
  14. 14.
    D.Y. Yoon and C. K. Choi, Korean J. Chem. Eng., 6, 144 (1989).CrossRefGoogle Scholar
  15. 15.
    A. Selim and D. A. S. Rees, J. Porous Media, 10, 1 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Hassanzadeh, N. Pooladi-Darvish and D.W. Keith, AIChE J., 53, 1121 (2007).CrossRefGoogle Scholar
  17. 17.
    M. C. Kim and C. K. Choi, Phys. Fluids, 19, 088103 (2007).CrossRefGoogle Scholar
  18. 18.
    D. A. Nield and A. Bejan, Convection in Porous Media, 4th Ed., Springer (2013).CrossRefGoogle Scholar
  19. 19.
    J. S. Hong and M. C. Kim, Trans. Porous Media, 72, 241 (2008).CrossRefGoogle Scholar
  20. 20.
    D. A. S. Rees and L. Storesletten, Trans. Porous Media, 19, 79 (1995).CrossRefGoogle Scholar
  21. 21.
    M.C. Kim, Korean J. Chem. Eng., 30, 831 (2013).CrossRefGoogle Scholar
  22. 22.
    M. C. Kim, Korean J. Chem. Eng., 29, 1688 (2012).CrossRefGoogle Scholar
  23. 23.
    T. J. Kneafsey and K. Pruess, Transp. Porous Med., 82, 123 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringJeju National UniversityJejuKorea

Personalised recommendations