Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1195–1200 | Cite as

An experimental study on the performance of a condensing tumbler dryer with an air-to-air heat exchanger

  • Yeongjin Do
  • Myungjong Kim
  • Taewan Kim
  • Seonghae Jeong
  • Sangho Park
  • Sangwoo Woo
  • Yeonghwan Kwon
  • Yoongho Jung
  • Jaekeun Lee
  • Youngchull AhnEmail author
Transport Phenomena

Abstract

The performance of energy consumption in the closed-loop tumbler dryer with a condenser for clothes drying is evaluated as a function of the heater capacity, the drying air flow rate inside the dryer, and the cooling air flow rate. The clothes dryer in laundries used in this study consists of a tumbling drum, condenser for condensing the humid and hot air flowing out the rotating drums, and electric heater for heating the circulating drying air. Tests were performed at the heating capacity of 1.9 kW to 2.7 kW, the drying air flow rate of 60 m3/h to 140 m3/h, and the cooling air flow rate of 100 m3/h to 240 m3/h. The total energy consumption, the drying time, and the condensate water rate were also investigated. Parametric results showed that a larger heater power resulted in shorter drying time. With increasing heater power, the air temperature and the condensate rate increased due to the higher humidity ratio in the air. The drying air flow rate and the cooling air flow rate did not have a significant effect on drying performance.

Key words

Tumbler Dryer Condenser Heater Power Energy Consumption Drying Time Cooling Air Flow Drying Air Flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Conde, Appl. Thermal Eng., 17(12), 1163 (1997).CrossRefGoogle Scholar
  2. 2.
    M. Cochran, J. Goodnight, B. Babin and S. Eckels, Appl. Thermal Eng., 29, 723 (2009).CrossRefGoogle Scholar
  3. 3.
    P. K. Bansal, J. E. Braun and E. A. Groll, Int. J. Energy Res., 25, 1315 (2001).CrossRefGoogle Scholar
  4. 4.
    S. Deng and H. Han, Appl. Thermal Eng., 24, 2789 (2004).CrossRefGoogle Scholar
  5. 5.
    A. Ameen and S. Bari, Energy Convers. Manage., 45, 1397 (2004).CrossRefGoogle Scholar
  6. 6.
    K. Lee, B. Yang, S. Pyo, H. Kim, D. Lee and S. Kim, Korean J. Chem. Eng., 23(4), 658 (2006).CrossRefGoogle Scholar
  7. 7.
    I. Masahiro, I. Tatsuo and T. Teruya, Toshiba Review, 61(10), 8 (2006).Google Scholar
  8. 8.
    J. E. Brauna, P. K. Bansal and E. A. Grolla, Int. J. Refrig., 25, 954 (2002).CrossRefGoogle Scholar
  9. 9.
    A.M. Bassily and G. M. Clover, Drying Technology, 21(3), 499 (2003).CrossRefGoogle Scholar
  10. 10.
    A.M. Bassily and G. M. Clover, Drying Technology, 21(5), 919 (2003).CrossRefGoogle Scholar
  11. 11.
    IEC 61121 (2007).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Yeongjin Do
    • 1
  • Myungjong Kim
    • 1
  • Taewan Kim
    • 1
  • Seonghae Jeong
    • 1
  • Sangho Park
    • 1
  • Sangwoo Woo
    • 1
  • Yeonghwan Kwon
    • 2
  • Yoongho Jung
    • 2
  • Jaekeun Lee
    • 3
  • Youngchull Ahn
    • 4
    Email author
  1. 1.LG Electronics, Gaeumjeong-dongChangwon City, GyeongnamKorea
  2. 2.School of Mechanical EngineeringPusan National UniversityBusanKorea
  3. 3.EcoEnergy Research InstituteBusanKorea
  4. 4.Department of Architectural EngineeringPusan National UniversityBusanKorea

Personalised recommendations