Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1222–1228 | Cite as

Preparation and properties of sulfated zirconia for hydrolysis of ethyl lactate

  • Weixing LiEmail author
  • Yingxiang Ni
  • Weiwei Liu
  • Weihong Xing
  • Nanping Xu
Catalysis, Reaction Engineering


Sulfated zirconia catalysts are proposed for the reversible hydrolysis of ethyl lactate instead of liquid acids. Sulfated zirconia catalysts were prepared by precipitation-impregnation method. The zirconium hydroxide was produced from zirconium oxychloride by adding aqueous ammonia and then impregnated in sulfuric acid. The solid samples were obtained by filtration and evaporation of the mixtures, respectively. After the samples were calcined, the sulfated zirconia catalysts were prepared. The results showed that the catalyst prepared by evaporation has higher catalytic activity. The physicochemical characteristics of the sulfated zirconia catalysts were studied by thermal analysis, X-ray powder diffraction (XRD), temperature programmed desorption of ammonia (NH3-TPD) and N2 adsorption-desorption, respectively. By the precipitation-impregnation-evaporation method, the optimal sulfated zirconia catalyst of tetragonal phase was prepared under liquid-solid ratio of 5ml/g, 1 mol/L of H2SO4 and calcination at 650 °C for 3 h. The conversion of the ethyl lactate was 87.8% in 3 h at 85 °C with the catalyst loading 2 wt% and initial molar ratio of water to ethyl lactate 20: 1.

Key words

Sulfated Zirconia Hydrolysis Ethyl Lactate Catalyst, Precipitation-impregnation Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. J. Wee, J. N. Kim and H.W. Ryu, Food Technol. Biotechnol., 44, 163 (2006).Google Scholar
  2. 2.
    M. T. Sanz, R. Murga, S. Beltran, J. L. Cabezas and J. Coca, Ind. Eng. Chem. Res., 43, 2049 (2004).CrossRefGoogle Scholar
  3. 3.
    R.L. Martins and M. Schmal, Appl. Catal. A: Gen., 308, 143 (2006).CrossRefGoogle Scholar
  4. 4.
    T. A. Peters, N. E. Benes and J.T. F. Keurentjes, Appl. Catal. A: Gen., 317, 113 (2007).CrossRefGoogle Scholar
  5. 5.
    A. Izci and F. Bodur, React. Funct. Polym., 67, 1458 (2007).CrossRefGoogle Scholar
  6. 6.
    T. Peters, N. Benes, A. Holmen and J. Keurentjes, Appl. Catal. A: Gen., 297, 182 (2006).CrossRefGoogle Scholar
  7. 7.
    X. H. Sun, Q. H. Wang, W. C. Zhao, H. Z. Ma and K. Sakata, Sep. Purif. Technol., 49, 43 (2006).CrossRefGoogle Scholar
  8. 8.
    K. Suwannakarn, E. Lotero, J.G. Goodwin Jr. and C. Lu, J. Catal., 255, 279 (2008).CrossRefGoogle Scholar
  9. 9.
    N. Katada, T. Tsubaki and M. Niwa, Appl. Catal. A: Gen., 340, 76 (2008).CrossRefGoogle Scholar
  10. 10.
    X. H. Qi, M. Watanabe, T. M. Aida and R.L. Smith Jr., Catal. Commun., 10, 1771 (2009).CrossRefGoogle Scholar
  11. 11.
    N. Lohitharn and Jr. J. G. Goodwin, J. Catal., 245, 198 (2007).CrossRefGoogle Scholar
  12. 12.
    J. Deutsch, H. A. Prescott, D. Müller, E. Kemnitz and H. Lieske, J. Catal., 231, 269 (2005).CrossRefGoogle Scholar
  13. 13.
    G.D. Yadav and P.H. Mehta, Ind. Eng. Chem. Res., 33, 2198 (1994).CrossRefGoogle Scholar
  14. 14.
    S. Saravanamurugan and A. Riisager, Catal. Commun., 17, 71 (2012).CrossRefGoogle Scholar
  15. 15.
    W. X. Li, Y. X. Ni and W. H. Xing, Adv. Mater. Res., 233, 1529 (2011).Google Scholar
  16. 16.
    H. Matsuhashi, H. Nakamura, T. Ishihara, S. Iwamoto, Y. Kamiya, J. Kobayashi, Y. Kubota, T. Yamada, T. Matsuda, K. Matsushita, K. Nakai, H. Nishiquchi, M. Oqura, N. Okazaki, S. Sato, K. Shimizu, T. Shishido, S. Yamazoe, T. Takequchi, K. Tomishiqe, H. Yamashita, M. Niwa and N. Katada, Appl. Catal. A: Gen., 360, 89 (2009).CrossRefGoogle Scholar
  17. 17.
    C. Morterra, G. Cerrato and M. Signoretto, Catal. Lett., 41, 101 (1996).CrossRefGoogle Scholar
  18. 18.
    D. H. Guan, M. Q. Fan, J. Wang, J. Wang, Y. Zhang, Q. Liu and X.Y. Jing, Mater. Chem. Phys., 122, 278 (2010).CrossRefGoogle Scholar
  19. 19.
    B.M. Reddy, P.M. Sreekanth and P. L. Ataullah, J. Mol. Catal. A: Chem., 244, 1 (2006).CrossRefGoogle Scholar
  20. 20.
    K. Arata and M. Hino, Mater. Chem. Phys., 26, 213 (1990).CrossRefGoogle Scholar
  21. 21.
    R. Srinivasan and B. H. Davis, Prepr. Am. Chem. Soc. Div. Petrol. Chem., 36, 635 (1991).Google Scholar
  22. 22.
    D. Farcasiu, J.Q. Li and S. Cameron, Appl. Catal. A: Gen., 154, 173 (1997).CrossRefGoogle Scholar
  23. 23.
    Z. J. Kang, H. Z. Ma and B. Wang, Ind. Eng. Chem. Res., 48, 9346 (2009).CrossRefGoogle Scholar
  24. 24.
    S. R. Kirumakki, N. Nagaraju and K.V. R. Chary, Appl. Catal. A: Gen., 299, 185 (2006).CrossRefGoogle Scholar
  25. 25.
    A. I. Ahmed, S. A. El-Hakam, S. E. Samra, A. A. EL-Khouly and A. S. Khder, Colloids Surf. A: Physicochem. Eng. Aspects, 317, 62 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Weixing Li
    • 1
    Email author
  • Yingxiang Ni
    • 1
  • Weiwei Liu
    • 1
  • Weihong Xing
    • 1
  • Nanping Xu
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingChina

Personalised recommendations