Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1213–1221 | Cite as

Optimal oxygen concentration strategy through an isothermal oxidative coupling of methane plug flow reactor to obtain a high yield of C2 hydrocarbons

  • Amideddin Nouralishahi
  • Hassan PahlavanzadehEmail author
  • Mohammadmehdi Choolaei
  • Elaheh Esmaeili
  • Amir Yadegari
Catalysis, Reaction Engineering
  • 254 Downloads

Abstract

An optimal oxygen concentration trajectory in an isothermal OCM plug flow reactor for maximizing C2 production was determined by the algorithm of piecewise linear continuous optimal control by iterative dynamic programming (PLCOCIDP). The best performance of the reactor was obtained at 1,085 K with a yield of 53.9%; while, at its maximum value, it only reached 12.7% in case of having no control on the oxygen concentration along the reactor. Also, the effects of different parameters such as reactor temperature, contact time, and dilution ratio (N2/CH4) on the yield of C2 hydrocarbons and corresponding optimal profile of oxygen concentration were studied. The results showed an improvement of C2 production at higher contact times or lower dilution ratios. Furthermore, in the process of oxidative coupling of methane, controlling oxygen concentration along the reactor was more important than controlling the reactor temperature. In addition, oxygen feeding strategy had almost no effect on the optimum temperature of the reactor. Finally, using the optimal oxygen strategy along the reactor has more effect on ethylene selectivity compared to ethane.

Key words

Oxidative Coupling of Methane (OCM) Modelling Optimization Reaction Engineering Optimal Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. T. Joris, S. Jianjun, O. Louis, C.V. André, M. Claude and B. M. Guy, Catal. Today, 159, 29 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Lu, A.G. Dixon, W. R. Moser and Y. H. Ma, Chem. Eng. Sci., 55, 4901 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Traykova, N. Davidova, J. Tsaih and A. H. Weiss, Appl. Catal. A, 169, 237 (1998).CrossRefGoogle Scholar
  4. 4.
    O. T. Onsager, R. Lodeng, P. Soraker, A. Anundskaas and B. Helleborg, Catal. Today, 4, 355 (1989).CrossRefGoogle Scholar
  5. 5.
    G. E. Keller and M. M. Bhasin, J. Catal., 73, 9 (1982).CrossRefGoogle Scholar
  6. 6.
    J. S. Sung, K.Y. Choo, T.H. Kim, A. Greish, L. Glukhov, E. Finashina and L. Kustov, Appl. Catal. A, 380, 28 (2010).CrossRefGoogle Scholar
  7. 7.
    Z. Gholipour, A. Malekzadeh, R. Hatami, Y. Mortazavi and A. A. Khodadadi, J. Nat. Gas Chem., 19, 35 (2010).CrossRefGoogle Scholar
  8. 8.
    J. S. Ahari, M. T. Sadeghi and S. Z. Pashne, J. Taiwan Inst. Cheme. E, 42, 751 (2011).CrossRefGoogle Scholar
  9. 9.
    N. R. Farooji, A. Vatanil and S. Mokhtari, J. Nat. Gas Chem., 19, 385 (2010).CrossRefGoogle Scholar
  10. 10.
    M. Ghiasi, A. Malekzadeh, S. Hoseini, Y. Mortazavi, A. Khodadadi and A. Talebizadeh, J. Nat. Gas Chem., 20, 428 (2011).Google Scholar
  11. 11.
    L. Olivier, S. Haag, C. Mirodatos, A. C. van Veen, Catal. Today, 142, 34 (2009).CrossRefGoogle Scholar
  12. 12.
    S. Bhatia, C.Y. Thien and A. Mohamed, Chem. Eng. J., 148, 525 (2009).CrossRefGoogle Scholar
  13. 13.
    P. K. Kundu, Y. Zhang and A. K. Ray, Chem. Eng. Sci., 64, 5143 (2009).CrossRefGoogle Scholar
  14. 14.
    N. Yaghobi and M. H. Ghoreishy, J. Nat. Gas Chem., 18, 39 (2009).CrossRefGoogle Scholar
  15. 15.
    C.T. Tye, A. Mohamed and S. Bhatia, Chem. Eng. J., 87, 49 (2002).CrossRefGoogle Scholar
  16. 16.
    I. Istadi and N. A. S. Amin, Fuel Process. Technol., 87, 449 (2006).CrossRefGoogle Scholar
  17. 17.
    N. A. S. Amin and S. E. Pheng, Chem. Eng. J., 116, 187 (2006).CrossRefGoogle Scholar
  18. 18.
    P. K. Kundu, Y. Zhang and A. K. Ray, Chem. Eng. Sci., 64, 4137 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Rojnuckarin, C. A. Floudas, H. Rabitz and R.A. Yetter, Ind. Eng. Chem. Res., 35, 683 (1996).CrossRefGoogle Scholar
  20. 20.
    A. Faliks, R. A. Yetter, C. A. Floudas, R. Hall and H. Rabitz, J. Phys. Chem. A, 104, 10740 (2000).CrossRefGoogle Scholar
  21. 21.
    R. Luus and N. O. Okongwu, Chem. Eng. J., 75, 1 (1999).CrossRefGoogle Scholar
  22. 22.
    A. Nouralishahi, H. Pahlavanzadeh and J. Towfighi Daryan, Fuel Process. Technol., 89, 667 (2008).CrossRefGoogle Scholar
  23. 23.
    Z. Stansch, Kinetics for oxidative coupling of methane over La 2O3/ CaO catalyst, Ph.D Theses, Ruher University Bochum, Bochum (1997).Google Scholar
  24. 24.
    G. Chiappetta, G. Clarizia and E. Drioli, Chem. Eng. J., 136, 373 (2008).CrossRefGoogle Scholar
  25. 25.
    I. Karafyllis and P. Daoutidis, Comput. Chem. Eng., 26, 1087 (2002).CrossRefGoogle Scholar
  26. 26.
    M. Daneshpayeh, A. A. Khodadadi, N. Mostoufi, Y. Mortazavi, R. Sotudeh-Gharebagh and A. Talebizadeh, Fuel Process. Technol., 90, 403 (2009).CrossRefGoogle Scholar
  27. 27.
    Z. Stansch, Z. Mleczko and M. Baerns, Ind. Eng. Chem. Res., 36, 2568 (1997).CrossRefGoogle Scholar
  28. 29.
    J. Santamaria, M. Menendez, J. Pena and A. Barahona, Catal. Today, 13, 353 (1992).CrossRefGoogle Scholar
  29. 30.
    Y. K. Kao, L. Lei and Y. S. Lin, Ind. Eng. Chem. Res., 36, 3583 (1997).CrossRefGoogle Scholar
  30. 31.
    I. P. Androulakis and S. C. Reyes, AIChE J., 45, 860 (1999).CrossRefGoogle Scholar
  31. 32.
    Y. S. Su, J.Y. Ying and W. H. Green Jr., J. Catal., 218, 321 (2003).CrossRefGoogle Scholar
  32. 33.
    M. Daneshpayeh, N. Mostoufi, A. A. Khodadadi, R. Sotudeh-Gharebagh and Y. Mortazavi, Energy Fuel, 23, 3745 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Amideddin Nouralishahi
    • 1
    • 3
  • Hassan Pahlavanzadeh
    • 2
    Email author
  • Mohammadmehdi Choolaei
    • 3
  • Elaheh Esmaeili
    • 1
  • Amir Yadegari
    • 1
    • 3
  1. 1.Catalysis and Nanostructured Materials Research Laboratory, School of Chemical EngineeringUniversity of TehranTehranIran
  2. 2.Chemical Engineering DepartmentTarbiat Modares UniversityTehranIran
  3. 3.Carbon Nanotechnology and Energy InstituteTehranIran

Personalised recommendations