Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1277–1283 | Cite as

Life cycle assessment to evaluate the green house gas emission from oil palm bio-oil based power plant

  • Nurul Suhada Abdur Rasid
  • Syed Shatir Asghrar Syed-Hassan
  • Sharifah Aishah Syed Abdul Kadir
  • Mohammad AsadullahEmail author
Biotechnology

Abstract

The objective of this study is to assess the green house gas (GHG) emission for the production of bio-oil from oil palm biomass and its utilization for 10 MW power generation by evaluating the life cycle carbon footprint analysis. The life cycle GHG emission assessment includes four main stages, which cover the oil-palm cultivation, palm oil mill operation, biomass transportation and pyrolysis process for the production of bio-oil and its utilization for 10MW power generation. The results obtained suggest that the palm bio-oil has potential as a carbon neutral renewable energy source in the future. More importantly, it has no negative impact on the environment as the amount of CO2 emitted to the atmosphere during combustion of this fuel is lower than that of the CO2 absorbed from the atmosphere during cultivation stage.

Key words

Life Cycle Analysis Carbon Footprint Bio-oil Pyrolysis Oil Palm Biomass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Singh, A. H. Strømman and E. G. Hertwich, Energy, 45, 762 (2012).CrossRefGoogle Scholar
  2. 2.
    G. R. Timilsina, L. Kurdgelashvili and P. A. Narbel, Renew. Sustain. Energy Rev., 16, 449 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. L. Chiew, T. Iwata and S. Shimada, Biomass Bioenergy, 35, 2925 (2011).CrossRefGoogle Scholar
  4. 4.
    M.N.A. Hassan, P. Jaramillo and W. M. Griffin, Energy Policy, 39, 2615 (2011).CrossRefGoogle Scholar
  5. 5.
    Z. Husain, Z. A. Zainal and M. Z. Abdullah, Biomass Bioenergy, 24, 117 (2003).CrossRefGoogle Scholar
  6. 6.
    Y. Sumiani, J. Clean. Prod., 14, 87 (2006).CrossRefGoogle Scholar
  7. 7.
    N. Abdullah, F. Sulaiman and H. Gerhauser, J. Phy. Sci., 22, 1 (2011).Google Scholar
  8. 8.
    I. E. Henson, MPOB Technol., 31, 1 (2009).Google Scholar
  9. 9.
    J. Fan, T. N. Kalnes, M. Alward, J. Klinger, A. Sadehvandi and D.R. Shonnard, Renew. Energy, 36, 632 (2011).CrossRefGoogle Scholar
  10. 10.
    Map data@2012 Google, http://maps.google.com.my.
  11. 11.
    K. F. Yee, K. T. Tan, A. Z. Abdullah and K. T. Lee, Appl. Energy, 86, S189 (2009).CrossRefGoogle Scholar
  12. 12.
    I. E. Henson, MPOB Technol., 27, 1 (2004).Google Scholar
  13. 13.
    S. Pleanjai and S. H. Gheewala, Appl. Energy, 86, S209 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Stichnothe and F. Schuchardt, Biomass Bioenergy, 35, 3976 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Papong, T. Chom-In, S. Noksa-nga and P. Malakul, Energy Policy, 38, 226 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Farmer, R. Matthews, J.U. Smith, P. Smith and B. K. Singh, Current Opinion in Environ. Sustain., 3, 339 (2011).CrossRefGoogle Scholar
  17. 17.
    L. Melling, J.G. Kah, C. Beauvais and R. Hatano, Proceedings of the International Symposium on Tropical Peatland, Yogyakarta, Indonesia, August (2007).Google Scholar
  18. 18.
    B. Wicke, V. Dornburg, M. Junginger and A. Faaij, Biomass Bioenergy, 32, 1322 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. L. Lee, O. H. Ahmed, N. M. A. Majid and M. B. Jalloh, Am. J. Appl. Sci., 6, 711 (2009).Google Scholar
  20. 20.
    H. K. Gibbs, S. Brown, J. O. Niles and J. A. Foley, Environ. Res. Lett., 3, 1748 (2007).Google Scholar
  21. 21.
    R. D. Lasco, Sci. China Series C, 55 (2002).Google Scholar
  22. 22.
    A. B. Hamdan, D. M. Tayeb and M. A. Tarmizi, Oil Palm Bulletin, 52, 48 (2005).Google Scholar
  23. 23.
    E. Lamade, J. P. Bouillet, U. P.R. Cirad-Cp, I. Etp and I. Medan, Lipides, 12, 154 (2005).Google Scholar
  24. 24.
    S. P. de Souza, S. Pacca, M. T. de Ávila and J. L. B. Borges, Renew. Energy, 35, 2552 (2010).CrossRefGoogle Scholar
  25. 25.
    M. A. A. Mohammed, A. Salmiaton, W. A. K.G. Wan Azlina and M. S. M. Amran, Bioresour. Technol., 110, 628 (2012).CrossRefGoogle Scholar
  26. 26.
    N. Abdullah and H. Gerhauser, Fuel, 87, 2606 (2008).CrossRefGoogle Scholar
  27. 27.
    F. Sulaiman and N. Abdullah, Energy, 36, 2352 (2011).CrossRefGoogle Scholar
  28. 28.
    N. Abdullah, H. Gerhauser and F. Sulaiman, Fuel, 89, 2166 (2010).CrossRefGoogle Scholar
  29. 29.
    S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z.A. Rashid, M. J. Aris, Bioresour. Technol., 101, 4584 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Siangjaeo, S. H. Gheewala, K. Unnanon and A. Chidthaisong, Energy Sustain. Dev., 15, 1 (2011).CrossRefGoogle Scholar
  31. 31.
    F. Sulaiman, N. Abdullah, H. Gerhauser and A. Shariff, Biomass Bioenergy, 35, 3775 (2011).Google Scholar
  32. 32.
    N. R. Menon, Z. A. Rahman and N. A. Bakar, Oil Palm Ind. Econ. J., 3, 15 (2003).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Nurul Suhada Abdur Rasid
    • 1
  • Syed Shatir Asghrar Syed-Hassan
    • 1
  • Sharifah Aishah Syed Abdul Kadir
    • 1
  • Mohammad Asadullah
    • 1
    Email author
  1. 1.Faculty of Chemical EngineeringUniversiti Teknologi MARAShah Alam, SelangorMalaysia

Personalised recommendations