Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1272–1276 | Cite as

Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions

  • Jong Ho Lee
  • Sung Bong Kim
  • Hah Young Yoo
  • Ja Hyun Lee
  • Chulhwan Park
  • Sung Ok Han
  • Seung Wook KimEmail author


A kinetic model of mixed immobilized lipase (MIL) and co-immobilized lipase (CIL) systems was investigated by calculating the kinetic parameters based on the reaction mechanisms for lipase-catalyzed transesterification of soybean oil and methyl alcohol. The kinetic parameters were assessed under atmospheric and supercritical fluid conditions. Although the CIL system had a higher initial reaction rate, the effect of substrate inhibition by methanol was higher than that in the MIL system. The initial reaction rate of MIL and CIL decreased under atmospheric conditions as the methanol concentration increased. However, the initial reaction rate of MIL and CIL increased until methanol concentration increased to twice that of oil under the supercritical fluid condition. As a result, the inhibition effect by methanol was identified through a kinetic analysis. A simulated model can be used to predict the optimal conditions for biodiesel production under atmospheric and supercritical conditions.

Key words

Kinetic Model Lipase Enzyme Immobilization Co-immobilization Transesterification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Chulalaksananukul, J. S. Condoret, P. Delorme and R.M. Willemot, FEBS. Lett., 276, 181 (1990).CrossRefGoogle Scholar
  2. 2.
    A. T. Bull, Korean J. Chem. Eng., 18, 137 (2001).CrossRefGoogle Scholar
  3. 3.
    C. H. Kwon, D.Y. Shin, J. H. Lee, S.W. Kim and J.W. Kang, J. Microbiol. Biotechnol., 17, 1098 (2007).Google Scholar
  4. 4.
    G.W. Zhou, G. Z. Li, J. Xu and Q. Sheng, Collid. Surface, 194, 41 (2001).CrossRefGoogle Scholar
  5. 5.
    B. Freedman, R. O. Butterfield and E.H. Pryde, J. Am. Oil Chem. Soc., 63, 1375 (1986).CrossRefGoogle Scholar
  6. 6.
    Joelianingsih, H. Maeda, S. Hagiwara, H. Nabetani, Y. Sagara, T. H. Soerawidjaya, A. H. Tambunan and K. Abdullah, Renew. Energy, 33, 1629 (2008).CrossRefGoogle Scholar
  7. 7.
    H. Fukuda, A. Kondo and H. Noda, J. Biosci. Bioeng., 92, 405 (2001).Google Scholar
  8. 8.
    M.M. Soumanou and U. T. Bronscheuer, Enzyme Microbiol. Technol., 33, 97 (2003).CrossRefGoogle Scholar
  9. 9.
    A. Z. Sulaiman, Biotechnol. Prog., 21, 1442 (2005).CrossRefGoogle Scholar
  10. 10.
    K. Park, S. Lee, S. Maken, W. Koh, B. Min and J. Park, Korean J. Chem. Eng., 23, 601 (2006).CrossRefGoogle Scholar
  11. 11.
    D.H. Lee, J.M. Kim, H.Y. Shin, S.W. Kang and S.W. Kim, Biotechnol. Bioprocess Eng., 11, 522 (2006).CrossRefGoogle Scholar
  12. 12.
    J. H. Lee, S. B. Kim, S.W. Kang, Y. S. Song, C. Park, S.O. Han and S.W. Kim, Bioresour. Technol., 102, 2105 (2011).CrossRefGoogle Scholar
  13. 13.
    J. H. Lee, S.B. Kim, C. Park and S.W. Kim, Bioresour. Technol., 101, S66 (2010).CrossRefGoogle Scholar
  14. 14.
    J. H Lee, C. H Kwong, J.W. Kang, C. Park, B. Tae and S.W. Kim, Appl. Biochem. Biotechnol., 156, 24 (2009).CrossRefGoogle Scholar
  15. 15.
    J. H. Lee, D. H. Lee, J. S. Lim, B. H. Um, C. Park and S.W. Kim, J. Microbiol. Biotechnol., 18, 1927 (2008).Google Scholar
  16. 16.
    W. Malilas, S.W. Kang, S. B. Kim, H.Y. Yoo, W. Chulalaksananukul and S.W. Kim, Korean J. Chem. Eng., 30, 405 (2013).CrossRefGoogle Scholar
  17. 17.
    A. Zaidi, J. L. Gainer, G. Carta, A. Mrani, T. Kadiri, Y. Belarbi and A. Mir, J. Biotechnol., 93, 209 (2002).CrossRefGoogle Scholar
  18. 18.
    D. Mukesh, S. Jadhav, A. A. Banerji, K. Thakkar and H. S. Bevinakatti, J. Chem. Technol. Biotechnol., 69, 179 (1997).CrossRefGoogle Scholar
  19. 19.
    A. Z. Sulaiman, W. L. Fan and S. J. Lim, Proc. Biochem., 42, 951 (2007).CrossRefGoogle Scholar
  20. 20.
    C. D. Rosa, M. B. Morandim, J. L. Minow, D. Oliveira, H. Treichel and J. V. Oliveira, J. Supercrit. Fluids, 47, 49 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Giridhar, K. Chandana and K. Rajnish, Fuel, 83, 2029 (2004).CrossRefGoogle Scholar
  22. 22.
    Z. Guo and X. Xu, Green Chem., 8, 54 (2006).CrossRefGoogle Scholar
  23. 23.
    M. Habulin and Z. Knez, J. Chem. Technol. Biotechnol., 76, 1260 (2001).CrossRefGoogle Scholar
  24. 24.
    D. Oliveira and J.V. Oliveira, J. Supercrit. Fluids, 19, 141 (2001).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Jong Ho Lee
    • 1
  • Sung Bong Kim
    • 1
  • Hah Young Yoo
    • 1
  • Ja Hyun Lee
    • 1
  • Chulhwan Park
    • 2
  • Sung Ok Han
    • 3
  • Seung Wook Kim
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  3. 3.College of Life Science and BiotechnologyKorea UniversitySeoulKorea

Personalised recommendations