Skip to main content
Log in

Bench-scale batch bioleaching of spent petroleum catalyst using mesophilic iron and sulfur oxidizing acidophiles

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microbial leaching of a petroleum spent catalyst was carried out using mixed mesophilic iron and sulfur oxidizing acidophiles. Bench-scale batch stirred tank reactors with a working volume of 1 L were used in this study at 35 °C. The pulp density considered for the study was 10% (w/v), while the particle size of the spent catalyst was varied by 45–106, 106–212 and >212 μm. The leaching percentage of Ni from the spent catalyst was found to be highest (97–98%) with varying particle size. However, the leaching yield for rest of the metals like Al, Fe, V and Mo was 70–74%, 66–85%, 33–43% and 22–45%, respectively. Influence of particle size was predominant on the recovery of all metals except Ni. Assessment of the generation of the bioleach residue after bioleaching showed a weight loss of 54–62% due to the dissolution of the metal values from the spent catalyst. The mineralogical study conducted by X-ray diffraction and scanning electron microscopy supports the dissolution of metals from the spent catalyst. Jarosite mineral phase was the dominant mineral phase in the bioleach residue due to the dissolution of the oxidic and sulfidic mineral phases present in the feed spent catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Marafi and A. Stanislaus, Resour. Conserv. Recycl., 52, 859 (2008).

    Article  Google Scholar 

  2. C. Song, Catal. Today, 86, 211 (2003).

    Article  CAS  Google Scholar 

  3. D. L. Trimm, Appl. Catal. A: Gen., 212, 153 (2001).

    Article  CAS  Google Scholar 

  4. G. Parkinson and S. Isho, Chem. Eng., 94, 25 (1987).

    Google Scholar 

  5. R.G. Busnardo, N.G. Busnardo, G.N. Salvato and J. C. Afonso, J. Hazard. Mater., 139, 391 (2007).

    Article  CAS  Google Scholar 

  6. S. P. Barik, K. H. Park, P. K. Parhi and J. T. Park, Hydrometallurgy, 111–112, 46 (2012).

    Article  Google Scholar 

  7. A. Szymczycha-Madeja, J. Hazard. Mater., 186, 2157 (2011).

    Article  CAS  Google Scholar 

  8. E. A. Abdel-Aal and M.M. Rashad, Hydrometallurgy, 74, 189 (2004).

    Article  CAS  Google Scholar 

  9. A. Ognyanova, A. T. Ozturk, I. De Michelis, F. Ferella, G. Taglieri, A. Akcil and F. Vegliò, Hydrometallurgy, 100, 20 (2009).

    Article  CAS  Google Scholar 

  10. J. A. Brierley and C. L. Brierley, Hydrometallurgy, 59, 233 (2001).

    Article  CAS  Google Scholar 

  11. H.L. Ehrlich, Euro. J. Min. Proc. Environ. Protect., 4, 102 (2004).

    Google Scholar 

  12. S. Panda, C.K. Sarangi, N. Pradhan, T. Subbaiah, L.B. Sukla, B. K. Mishra, G. L. Bhatoa, M. Prasad and S.K. Ray, Korean J. Chem. Eng., 29, 781 (2012).

    Article  CAS  Google Scholar 

  13. C. S. Gahan, D. J. Kim, H. Srichandan and A. Akcil, Res. J. Recent Sci., 1, 85 (2012).

    CAS  Google Scholar 

  14. S. Panda, K. Sanjay, L. B. Sukla, N. Pradhan, T. Subbaiah, B. K. Mishra, M. S.R. Prasad and S. K. Ray, Hydrometallurgy, 125–126, 157 (2012).

    Article  Google Scholar 

  15. C. S. Gahan, M. L. Cunha and Å. Sandström, Hydrometallurgy, 95, 190 (2009).

    Article  CAS  Google Scholar 

  16. C. S. Gahan, J. E. Sundkvist and Å. Sandström, Miner. Eng., 23, 731 (2010).

    Article  CAS  Google Scholar 

  17. D. Mishra, D. J. Kim, D. E. Ralph, J.G. Ahn and Y. H. Rhee, Waste Manage., 28, 333 (2008).

    Article  CAS  Google Scholar 

  18. B. Xin, D. Zhang, X. Zhang, Y. Xia, F. Wu, S. Chen and L. Li, Bioresour. Technol., 100, 6163 (2009).

    Article  CAS  Google Scholar 

  19. W. Burgstaller and F. Schinner, J. Biotechnol., 27, 91 (1993).

    Article  CAS  Google Scholar 

  20. P. P. Bosshard, R. Bachofen and H. Brandl, Environ. Sci. Technol., 30, 3066 (1996).

    Article  CAS  Google Scholar 

  21. C. Cerruti, G. Curutchet and E. Donati, J. Biotechnol., 62, 209 (1998).

    Article  CAS  Google Scholar 

  22. D. Pradhan, D. J. Kim, J.G. Ahn, C. S. Gahan, H. S. Chung and S.W. Lee, Korean J. Met. Mater., 49, 956 (2011).

    CAS  Google Scholar 

  23. L. A. Mutch, H. R. Watling and E. L. J. Watkin, Hydrometallurgy, 104, 391 (2010).

    Article  CAS  Google Scholar 

  24. D. Mishra, J.G. Ahn, D. J. Kim, G. Roychaudhury and D. E. Ralph, J. Hazard. Mater., 167, 1231 (2009).

    Article  CAS  Google Scholar 

  25. D. Mishra, D. J. Kim, D. E. Ralph, J.G. Ahn and Y. H. Rhee, Hydrometallurgy, 88, 202 (2007).

    Article  CAS  Google Scholar 

  26. V. Bosio, M. Viera and E. Donati, J. Hazard. Mater., 154, 804 (2008).

    Article  CAS  Google Scholar 

  27. F. Beolchini, V. Fonti, F. Ferella and F. Veglio, J. Hazard. Mater., 178, 529 (2010).

    Article  CAS  Google Scholar 

  28. R.M. Gholami, S.M. Borghei and S.M. Mousavi, Hydrometallurgy, 106, 26 (2011).

    Article  CAS  Google Scholar 

  29. D. Pradhan, D. Mishra, D. J. Kim, J.G. Ahn, G. R. Chaudhury and S.W. Lee, J. Hazard. Mater., 175, 267 (2010).

    Article  CAS  Google Scholar 

  30. M. P. Silverman and D.G. Lundgren, J. Bacteriol., 77, 642 (1959).

    CAS  Google Scholar 

  31. D. E. Rawlings, D. Dew and C. D. Plessis, Trends. Biotechnol., 21, 38 (2003).

    Article  CAS  Google Scholar 

  32. J. E. Dutrizac, Metall. Trans. B, 14, 531 (1983).

    Article  Google Scholar 

  33. C. S. Gahan, J. E. Sundkvist and Å. Sandström, J. Hazard. Mater., 172, 1273 (2009).

    Article  CAS  Google Scholar 

  34. A. Akcil and H. Deveci, Geomicrobiology, Science Publishers, New Hampshire, USA (ISBN: 978-1-57808-665-8), 101 (2010).

    Book  Google Scholar 

  35. A. Schippers and W. Sand, Appl. Environ. Microbiol., 65, 319 (1999).

    CAS  Google Scholar 

  36. H. Tributsch, Hydrometallurgy, 59, 177 (2001).

    Article  CAS  Google Scholar 

  37. W. Sand, T. Gehrke, P.G. Jozsa and A. Schippers, Hydrometallurgy, 59, 159 (2001).

    Article  CAS  Google Scholar 

  38. T. Rohwerder, T. Gehrke, K. Kinzler and W. Sand, Appl. Microbiol. Biotechnol., 63, 239 (2003).

    Article  CAS  Google Scholar 

  39. D. E. Rawlings, D. Dew and C. D. Plessis, Trends Biotechnol., 21, 38 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhar Gahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srichandan, H., Kim, DJ., Gahan, C.S. et al. Bench-scale batch bioleaching of spent petroleum catalyst using mesophilic iron and sulfur oxidizing acidophiles. Korean J. Chem. Eng. 30, 1076–1082 (2013). https://doi.org/10.1007/s11814-013-0017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0017-8

Key words

Navigation