Skip to main content

Advertisement

Log in

Eco-efficiency and control loop configuration for recycle systems

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To integrate measurements of eco-efficiency with control loop configuration has become an important topic since all industrial processes/plants are requested to increase their eco-efficiency. The exergy eco-efficiency factor, a new measure of eco-efficiency for control loop configuration, has been developed recently [1]. The exergy eco-efficiency factor is based on the thermodynamic concept of exergy, which can be used to analyze a process in terms of its efficiency. The combination of the relative gain array (RGA), NI, CN, dynamic RGA, and the exergy eco-efficiency factor will help guide the process designer to find the optimal control design with low operating cost/eco-efficiency. In this paper, we validate the proposed exergy eco-efficiency factor for processes with recycles which are very common industrially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Munir, W. Yu and B. R. Young, Plant-wide control: Eco-efficiency and control loop configuration, ISA Transactions, 52(1), 162 (2013).

    CAS  Google Scholar 

  2. D. E. Seborg, T. F. Edgar and D. A. Mellichamp, Process dynamics and control, New York: John Wiley & Sons (1989).

    Google Scholar 

  3. W.Y. Svrcek, D. P. Mahoney and B.R. Young, A real-time approach to process control, Chichester: John Wiley & Sons Ltd. (2006).

    Book  Google Scholar 

  4. D. L. Westphalen, B. R. Young and W.Y. Svrcek, Ind. Eng. Chem. Res., 42(20), 4659 (2003).

    Article  CAS  Google Scholar 

  5. M.-J. He and W.-J. Cai, Ind. Eng. Chem. Res., 43(22), 7057 (2004).

    Article  CAS  Google Scholar 

  6. T. J. McAvoy, Y. Arkun, R. Chen, D. Robinson and P. D. Schnelle, Control Eng. Practice, 11(8), 907 (2003).

    Article  Google Scholar 

  7. Q. Xiong, W.-J. Cai and M.-J. He, J. Process Control, 15(7), 741 (2005).

    Article  CAS  Google Scholar 

  8. S. Vasudevan and G. P. Rangaiah, Ind. Eng. Chem. Res., 49(19), 9209 (2010).

    Article  CAS  Google Scholar 

  9. T. Larsson and S. Skogestad, Modeling, Identification and Control, 21(4), 209 (2000).

    Article  Google Scholar 

  10. J. Szargut, D. R. Morris and F. R. Steward, Exergy analysis of thermal, chemical, and metallurgical processes, New York: Hemisphere (1988).

    Google Scholar 

  11. J.M. Montelongo-Luna, W.Y. Svrcek and B.R. Young, Asia-Pacific J. Chem. Eng., 2(5), 431 (2007).

    Article  CAS  Google Scholar 

  12. T. Muangnoi, W. Asvapoositkul and S. Wongwises, Appl. Therm. Eng., 27(5–6), 910 (2007).

    Article  CAS  Google Scholar 

  13. M. J. Moran and E. Sciubba, J. Eng. Gas Turbines Power, 116(2), 285 (1994).

    Article  CAS  Google Scholar 

  14. M. A. Rosen and I. Dincer, Int. J. Energy Res., 21, 643 (1997).

    Article  CAS  Google Scholar 

  15. M. A. Rosen and I. Dincer, Int. J. Energy Res., 23, 1153 (1999).

    Article  CAS  Google Scholar 

  16. M. A. Rosen and I. Dincer, Exergy, An Int. J., 1(1), 3 (2001).

    Article  Google Scholar 

  17. I. Dincer, Energy Policy, 30(2), 137 (2002).

    Article  Google Scholar 

  18. I. Dincer and M. A. Rosen, Exergy: Energy, environment and sustainable development, Amsterdam: Elsevier (2007).

    Google Scholar 

  19. I. Dincer, M. M. Hussain and I. Al-Zaharnah, Energy Policy, 32(14), 1615 (2004).

    Article  Google Scholar 

  20. W. L. Luyben, B. D. Tyreus and M. L. Luyben., Plantwide process control, New York: McGraw-Hill (1998).

    Google Scholar 

  21. M. T. Munir, W. Yu and B. R. Young, Determination of Plant-wide Control Loop Configuration and Eco-Efficiency, G. P. Rangaiah and V. Kariwala (Eds.), in Plantwide Control: Recent Developments and Applications, John Wiley & Sons, ISBN:9780470980149 (2012).

    Google Scholar 

  22. J.M. Montelongo-Luna, W.Y. Svrcek and B. R. Young, The Relative Exergy Array — A tool for integrated process design and control in Chemeca 20092009: Perth, Australia.

  23. J.M. Montelongo-Luna, W.Y. Svrcek and B. R. Young, The Canadian J. Chem. Eng., 89(3), 545 (2010).

    Article  Google Scholar 

  24. M. T. Munir, W. Yu and B. R. Young, Control loop configuration and eco-efficiency, in FOCAPO/CPC-VIII2012: Savannah, Georgia, USA.

  25. M.T. Munir, J. J. Chen and B. R. Young, A computer program to calculate the stream exergy using the visual basic graphical interface, in Chemeca2010: Adelaide, Australia.

  26. M.T. Munir, W. Yu and B. R. Young, Chem. Eng. Res. Design, 90(1), 110 (2012).

    Article  CAS  Google Scholar 

  27. A. Papadourakis, M. F. Doherty and J.M. Douglas, Ind. Eng. Chem. Res., 26(6), 1259 (1987).

    Article  CAS  Google Scholar 

  28. E. Bristol, Automatic Control, IEEE Transactions on, 11(1), 133 (1966).

    Article  Google Scholar 

  29. S. Skogestad, P. Lundström and E.W. Jacobsen, AIChE J., 36(5), 753 (1990).

    Article  CAS  Google Scholar 

  30. M. F. Witcher and T. J. McAvoy, ISA Trans., l6(3), 35 (1977).

    Google Scholar 

  31. A. Fatehi and A. Shariati, Automatic pairing of MIMO plants using normalized RGA, in Mediterranean conference on control and automation2007: Athens Greece.

  32. A. Niederlinski, Automatica, 7(6), 691 (1971).

    Article  Google Scholar 

  33. Z.-X. Zhu and A. Jutan, Chem. Eng. Communications, 121(1), 235 (1993).

    Article  CAS  Google Scholar 

  34. T. J. McAvoy, Interaction analysis: Principles and applications. Research Triangle Park, NC: Instrument Society of America (1983).

    Google Scholar 

  35. B. A. Ogunnaike and W. H. Ray, Process dynamics, modelling and control, Oxford University Press (1994).

    Google Scholar 

  36. J. Goldberg and M.C. Potter, Differential equations a systems approach, New Jersey: Prentice-Hall (1998).

    Google Scholar 

  37. K. G. Denbigh, Chem. Eng. Sci., 6(1), 1 (1956).

    Article  CAS  Google Scholar 

  38. T. J. Kotas, The exergy method of thermal plant analysis, London: Butterworths. Medium: X; Size: Pages: 344 (1985).

    Google Scholar 

  39. J. M. Smith, H.C.V. Ness and M. M. Abbott, Introduction to chemical engineering thermodynamics, New York: McGraw-Hill (2005).

    Google Scholar 

  40. R. Smith, Chemical process design and integration, Chichester, England: John Wiley & Sons, Ltd. (2005).

    Google Scholar 

  41. A. P. Hinderink, F. P. J. M. Kerkhof, A. B. K. Lie, J. De Swaan Arons and H. J. Van Der Kooi, Chem. Eng. Sci., 51(20), 4693 (1996).

    Article  CAS  Google Scholar 

  42. J. Szargut, D. R. Morris and F. R. Steward, Energy analysis of thermal, chemical, and metallurgical processes, Medium: X; Size: Pages: 332 (1988).

    Google Scholar 

  43. W. D. Seider, J. D. Seader and D. R. Lewin., Product and process design principles: Synthesis, analysis, and evaluation, 2nd Ed., New York: John Wiley (2004).

    Google Scholar 

  44. J.M. Montelongo-Luna, J.M., Process design and control for ecoefficiency, in Chemical and Petroleum Engineering2010, University of Calgary: Calgary, Alberta.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tajammal Munir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munir, M.T., Yu, W. & Young, B.P. Eco-efficiency and control loop configuration for recycle systems. Korean J. Chem. Eng. 30, 997–1007 (2013). https://doi.org/10.1007/s11814-013-0005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0005-z

Key words

Navigation