Korean Journal of Chemical Engineering

, Volume 30, Issue 2, pp 253–261 | Cite as

Waste paper sludge as a potential biomass for bio-ethanol production

  • Joni Prasetyo
  • Enoch Y. ParkEmail author
Invited Review Paper


This review describes the utilization of paper sludge (PS), which is waste from the pulp and paper industry. Its advantages make PS the cellulosic biomass with the most potential for bio-refinery research and applicable for industrial scale. Some of the grain based biofuels and chemicals have already been in commercial operation, including fuel ethanol or biochemical products. Unfortunately, research and application of PS are yet in their infancy and suffer from large scale because of low productivity. Reviewing the many researches that are working at the utilization of PS for bio-refineries could encourage the utilization of PS from laboratory research to be applied in industry. For this reason, PS usage as industrial raw material will be effective in solving the environmental problems caused by PS with clean technology. In addition, its conversion to bio-ethanol could offer an alternative solution to the energy crisis from fossil fuel. Two methods of PS utilization as raw material for bio-ethanol production are introduced. The simultaneous saccharification and fermentation (SSF) using cellulase produced by A. cellulolyticus and thermotolerant S. cerevisiae TJ14 gave ethanol yield 0.208 (g ethanol/g PS organic material) or 0.051 (g ethanol/g PS). One pot bioethanol production as a modified consolidated biomass processing (CBP) technology gave ethanol yield 0.19 (g ethanol/g Solka floc) and is considered to be the practical CBP technology for its minimizing process.

Key words

Paper Sludge Cellulase Bio-refinery SSF Acremonium cellulolyticus Saccharomyces cerevisiae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2. (Evans, G. “International Biofuels Strategy Project. Liquid Transport Biofuels — Technology Status Report, NNFCC 08-017,” National Non-Food Crops Centre, 2008-04-14. Retrieved on 2011-02-16).
  3. 3.
  4. 4.
    A. Idi and S. E. Mohamad, Interdisciplinary Journal of Contemporary Research in Business, 3, 919 (2011).Google Scholar
  5. 5.
    J. Prasetyo, J. Zhu, T. Kato and E.Y. Park, Biotechnol. Progr., 1, 104 (2011).CrossRefGoogle Scholar
  6. 6.
    C. Moukamnerd, M. Kino-oka, M. Sugiyama, Y. Kaneko, C. Boonchird, S. Harashima, H. Noda, K. Ninomiya, S. Shioya and Y. Katakura, Appl. Microbiol. Biotechnol., 88, 87 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Macrelli, J. Mogenson and G. Zacchi, Biotechnology for Biofuels, 5, 22 (2012).CrossRefGoogle Scholar
  8. 8.
    Y. Yamashita, C. Sasaki and Y. Nakamura, Carbohyd. Polymers, 79, 250 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Shen and F. A. Agblevor, BioprL. Biosyst. Eng., 34, 33 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Larsson, E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, G. Zacchi and N.O. Nilvebrant, Enzyme Microb. Technol., 24, 151 (1999).CrossRefGoogle Scholar
  11. 11.
    T.D. Ranaatunga, J. Jervis, R. F. Helm, J. D. McMillan and R. J. Wooley, Enzyme Microb. Technol., 27, 240 (2000).CrossRefGoogle Scholar
  12. 12. (K. C. Das, E.W. Tollner, Georgia Univ. Experiment, Athens, Georgia. Retrieved on 2nd October 2012).
  13. 13.
  14. 14.
    J. Prasetyo, N. Kazuya, T. Kato, C. Boonchird, S. Harashima and E. Y. Park, Biotechnol. Biofuels, 4, 35 (2011).CrossRefGoogle Scholar
  15. 15.
    T. Ando, T. Sakamoto, O. Sugiyama, K. Hiyoshi, N, Matsue and T. Henmi, Clay Sci., 12, 243 (2004).Google Scholar
  16. 16.
    L. R. Lynd, K. Lyford, C. R. South, P.G. van Walsum and K. Levenson, TAPPI J., 84, 50 (2001).Google Scholar
  17. 17.
  18. 18.
    A. T.W. N. Hendriks and G. Zeeman, Bioresour. Technol., 100, 10 (2009).CrossRefGoogle Scholar
  19. 19.
  20. 20.
    J. Nielson and J. Villadsen, Bioreaction engineering principles, Plenum Press, New York, 86–87 (1994).Google Scholar
  21. 21.
    A. Marsushika, H. Inoue, T. Kodaki and S. Sawayama, Appl. Microbiol. Biotechnol., 84, 37 (2009).CrossRefGoogle Scholar
  22. 22.
    B. Erdei, Z. Barta, B. Sipos, K. Reczey, M. Galbe and G. Zacchi, Biotechnol. Biofuel, 3, 16 (2010).CrossRefGoogle Scholar
  23. 23.
    Z. Fan, C. South, K. Lyford, J. Munsie, P.V. Walsum and L.R. Lynd, Bioproc. Biosyst. Eng., 26, 93 (2003).CrossRefGoogle Scholar
  24. 24. (K.M. Pope, Paper sludge-waste disposal problem or energy opportunity. Energy products of Idaho 1999. Retrieved in April 2009).
  25. 25.
    J. Prasetyo, T. Kato and E.Y. Park, Biomass Bioenergy, 34, 1906 (2010).CrossRefGoogle Scholar
  26. 26.
    R. Lakshmidevi and K. Muthukumar, Int. J. Hydrogen Energy, 35, 3389 (2010).CrossRefGoogle Scholar
  27. 27.
    Environment Agency, Paper sludge ash: A technical report on the production and use of paper sludge ash. The Old Academy, Banbury, Oxon, UK (2008).Google Scholar
  28. 28.
    D. Karcher and W. Baser, Paper mill sludge as a mulch during turf grass establishment, In: Clark JR, Evans MR, editors. Horticulture Studies, Fayetteville: Arkansas Agricultural Experiment Station, Research Series, 494, 67 (2002).Google Scholar
  29. 29.
    J. Zaldivar, J. Nielsen and L. Olsson, Appl. Microbiol. Biotechnol., 56, 17 (2001).CrossRefGoogle Scholar
  30. 30.
    Y. Ikeda, H. Hayashi, N. Okuda and E.Y. Park, Biotechnol. Progr., 23, 333 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Kansarn, A novel concept for the enzymatic degradation mechanism of native cellulose by A. cellulolyticus, Shizuoka University Repository (SURE), 91,, School of Electronic Science Research Report 2002, 23, 89 (2002).
  32. 32.
    P. Bansal, M. Hall, M. J. Realff, J.H. Lee and A. S. Bommarius, Biotechnol. Adv., 27, 833 (2009).CrossRefGoogle Scholar
  33. 33.
    I.D. L. Mata, P. Estrada, R. Macarron and J.M. Dominguez, Biochem., 283, 679 (1992).Google Scholar
  34. 34.
    J. Prasetyo, S. Sumita, N. Okuda and E.Y. Park, Appl. Biochem. Biotechnol., 162, 52 (2010).CrossRefGoogle Scholar
  35. 35.
  36. 36.
    A. V. Gusakov and A. P. Sinitsyn, Biotechnol. Bioeng., 40, 663 (1992).CrossRefGoogle Scholar
  37. 37.
    P. A.M. Claassen, J. B. van Lier, A. M. L. Contreras, E.W. J. van Niel, L. Sijtsma, A. J.M. Stams, S. S. de Vries and R. A. Weusthuis, Appl. Microbiol. Biotechnol., 6, 741 (1999).CrossRefGoogle Scholar
  38. 38.
    B. D. Solomon, J. R. Barnes and K. E. Halvorsen, Biomass Bioenergy, 6, 416 (2007).CrossRefGoogle Scholar
  39. 39.
    L.R. Lynd, P. J. Weimer and W. H. van Zyl, Microbiol. Mol. Biol. Rev., 66, 506 (2002).CrossRefGoogle Scholar
  40. 40.
    L.R. Lynd, W. H. van Zyl, J. E. McBride and M. Laser, Curr. Opin. Biotechnol., 16, 577 (2005).CrossRefGoogle Scholar
  41. 41.
    S.U. Lee, K. Jung, G.W. Park, C. Seo, Y. K. Hong, W. H. Hong and H. N. Chang, Korean J. Chem. Eng., 29, 831 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  1. 1.Laboratory of Biotechnology, Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan

Personalised recommendations