Skip to main content

Advertisement

Log in

Innovative and intensified technology for the biological pretreatment of agro waste for ethanol production

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is an abundant, renewable resource, but the structural and chemical complexity of biomass acts as a hindrance in its effective utilization for cellulosic ethanol production. Hence, effective pretreatment is always necessary to remove the surrounding matrix of lignin prior to the enzymatic hydrolysis. Pretreatment of rice straw by Pleurotus florida was found to be effective and resulted in 49% lignin degradation, whereas fungus along with grape leaves resulted in 99% lignin degradation. This method not only explores a pathway for utilizing the solid agro waste but also results in a value-added product of edible mushrooms that has proved to be the best pretreatment technology for ethanol production. FTIR and SEM analysis confirmed the structural transformation taking place during the pretreatment. The components of grape leaves were also analyzed using GC-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shiva, F.G. Mohammad and S. Soheil, African J. Microbiol. Res., 6, 704 (2012).

    Google Scholar 

  2. Y. Yamshita, A. Kurosumi, C. Sasaki and Y. Nakamura, J. Biochem. Eng., 42, 314 (2008).

    Article  Google Scholar 

  3. Y. Sun and J. Cheng, Bioresour. Technol., 83, 1 (2002).

    Article  CAS  Google Scholar 

  4. C. Shigeru, N. Megumi, R. M. Habibur, N. Youji, Y. Takanori, O. Hiroyuki and K. Yasurou, J. Biosci. Bioeng., 111, 433 (2011).

    Article  Google Scholar 

  5. S. Malherbe and T. E. Cloete, Environ. Sci. Biotechnol., 1, 105 (2003).

    Article  Google Scholar 

  6. Y. Nutawan, P. Phattayawadee, T. Pattranit and N. E. Mohammad, Energy Res. J., 1, 26 (2010).

    Article  Google Scholar 

  7. P. Ghosh and A. Singh, Adv. Appl. Microbiol., 39, 295 (1993).

    Article  CAS  Google Scholar 

  8. P. S. Chahal and D. S. Chahal, Bioconversion of Waste Materials to Industrial Products, 376 (1999).

    Google Scholar 

  9. C. S. Gong, N. J. Cao, J. Du and G.T. Tsao, Adv. Biochem. Eng. Biotechnol., 65, 207 (1999).

    CAS  Google Scholar 

  10. Y. Nakamura, T. Sawada and E. Inoue, J. Chem. Technol. Biotechnol., 76, 879 (2001).

    Article  CAS  Google Scholar 

  11. B. Yang, A. Baussaid, S. D. Mansfield, D. J. Gregg and J. N. Saddler, Biotechnol. Bioeng., 77, 678 (2002).

    Article  CAS  Google Scholar 

  12. A. Wingren, J. Soderstrom, M. Galbe and G. Zacche, Biotechnol. Progress, 29, 1421 (2004).

    Article  Google Scholar 

  13. X. Pan, C. Arato, N. Gilkes, D. Gregg, W. Mabee, K. Pye, Z. Xiao, X. Zhang and J. Saddler, Biotechnol. Bioeng., 90, 473 (2005).

    Article  CAS  Google Scholar 

  14. H. Itoh, M. Wada, Y. Honda, M. Kuwahara and T. Watanabe, J. Biotechnol., 103, 273 (2003).

    Article  CAS  Google Scholar 

  15. M. Dashtban, H. Schraft and W. Qin, Int. J. Biol. Sci., 5, 578 (2009).

    Article  CAS  Google Scholar 

  16. M. Mendels, W. Howlett and E. T. Reese, Canadian J. Microbiol., 7, 957 (1961).

    Article  Google Scholar 

  17. A. B. Thomas, W. A. Leonard and L. E. John, Botanical Gazette, 143 (1960).

    Google Scholar 

  18. C. M. Stafford, J. Biochem., 3, 45 (1960).

    Google Scholar 

  19. D. M. Updengroff, J. Anal. Biochem., 32, 420 (1969).

    Article  Google Scholar 

  20. R. P. Singh, H. S. Garcha and P. K. Khanna, Indian J. Microbiol., 29, 49 (1989).

    Google Scholar 

  21. B. Kodali and R. Pogaku, Elec. J. Environ. Agri. Food Chem., 5, 1253 (2006).

    CAS  Google Scholar 

  22. H. Akihiro, I. Hiroyuki, T. Kenichiro, F. Shinji, M. Tomoaki, I. Seiichi, E. Takashi and S. Shigeki, Bioresour. Technol., 100, 2706 (2009).

    Article  Google Scholar 

  23. M. C. Emiliano, M. S. Pablo and A. R. Roxana, Bioresour. Technol., 101, 818 (2010).

    Article  Google Scholar 

  24. S. O. Harinder, V. V. Praveen, B. Khushal, K. B. Vinod and T. P. Ramabhau, Process Biochem., 45, 1299 (2010).

    Article  Google Scholar 

  25. H. L. Hergert, Wiley-Interscience, 267 (1971).

    Google Scholar 

  26. B. J. George, Z. Frantisek and C.G. Guido, J. Agri. Food Chem., 37, 1382 (1989).

    Article  Google Scholar 

  27. A. Doshi, J. F. Munot and B. P. Chakravarti, Mushroom J. Tropics, 7, 83 (1987).

    Google Scholar 

  28. T. Deniz, D. Betül, D. Fatih, A. D. Ali, C. B. K. Husnu and R. Peter, J. Biosci., 58, 797 (2003).

    Google Scholar 

  29. A. Khalil, A. Lina, J. Yasmin and X. De-Yu, Anal. Methods, 2, 673 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarathinam Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, R., Ranganathan, B.V., Chathoth, K.N. et al. Innovative and intensified technology for the biological pretreatment of agro waste for ethanol production. Korean J. Chem. Eng. 30, 1051–1057 (2013). https://doi.org/10.1007/s11814-012-0215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0215-9

Key words

Navigation