Skip to main content
Log in

Slow drift modeling and compensation in the glass electrode dynamics for the fast measurement of pH

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Glass electrodes for measuring pH in solutions show relatively fast responses with slow drifts. To design compensators to remove the drifts that hinder fast measurements of pH, a dynamic model that consists of ordinary and partial differential equations is proposed. It can explain such two-time scale responses of glass electrodes. The fitting accuracies of the proposed model are experimentally evaluated in frequency-domain and time-domain. The frequency responses obtained from the square wave responses show the fitting abilities of the proposed model, and the step responses also support this. The step responses filtered based on the proposed model show that pH measurements can be made considerably faster. The proposed model can be used to improve the dynamics of glass pH electrodes by compensating dynamic elements causing slow drifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cremer, Z. Biol., 47, 562 (1906).

    CAS  Google Scholar 

  2. A. S. Rad, M. Ardjmand, M. Jahanshahi and A. Safekordi, Korean J. Chem. Eng., 29, 1063 (2012).

    Article  CAS  Google Scholar 

  3. D. C. Harris, Exploring chemical analysis, 4th Ed., Freeman & Company (2008).

    Google Scholar 

  4. G. Haugaard, J. Phys. Chem., 45, 148 (1941).

    Article  CAS  Google Scholar 

  5. K. L. Cheng, ACS Symp. Ser., 390, 287 (1989).

    Google Scholar 

  6. Y. Abe and M. Maeda, J. Electrochem. Soc., 147, 787 (2000).

    Article  CAS  Google Scholar 

  7. R. P. Buck, J. Electroanal. Chem., 18, 363 (1968).

    Article  CAS  Google Scholar 

  8. J. Lee, T. H. Lee, S. Lee and D. R. Yang, Korean J. Chem. Eng., 26, 636 (2009).

    Article  CAS  Google Scholar 

  9. D.R. Yang, S. Lee, S.W. Sung and J. Lee, IEEE Sensors J., 9, 1793 (2009).

    Article  Google Scholar 

  10. H. H. Kohler, C. Haider and S. Woelki, Adv. Colloid Interface Sci., 114–115, 281 (2005).

    Article  Google Scholar 

  11. G. T. Yu, Chem. Phys. Lett., 384, 124 (2004).

    Article  CAS  Google Scholar 

  12. A. N. Gorban, H. P. Sargsyan and H. A. Wahab, Math. Model. Nat. Phenom., 6, 184 (2011).

    Article  Google Scholar 

  13. E. Kreyszig, Advanced engineering mathematics, 10th Ed., Wiley, New York (2011).

    Google Scholar 

  14. J. Lee and D. H. Kim, Chem. Eng. J., 173, 644 (2011).

    Article  CAS  Google Scholar 

  15. S.W. Sung, J. Lee and I. B. Lee, Process Control, System Identification and PID Controllers, Wiley (2009).

    Google Scholar 

  16. D. E. Seborg, T. F. Edgar and D. A. Mellichamp, Process dynamics and control, 2nd Ed., Wiley, New York (2003).

    Google Scholar 

  17. S. Ju, S. J. Kim, J. Byeon, D. Chun, S.W. Sung and J. Lee, Korean Chem. Eng. Res., 46, 949 (2008).

    CAS  Google Scholar 

  18. J. Lee and T. F. Edgar, Chem. Eng. Sci., 65, 2629 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Cho, W. & Lee, J. Slow drift modeling and compensation in the glass electrode dynamics for the fast measurement of pH. Korean J. Chem. Eng. 30, 1008–1012 (2013). https://doi.org/10.1007/s11814-012-0214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0214-x

Key words

Navigation