Skip to main content
Log in

Free convective flow over a vertical plate in a doubly stratified medium with electrophoresis, heat source/sink and chemical reaction effects

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We analyzed the problem of unsteady, incompressible free convective doubly stratified flow past a semiinfinite vertical plate with the influence of electrophoresis, heat source/sink and chemical reaction. The partial differential equations governing the flow are solved by employing an implicit finite difference scheme of Crank-Nicolson type. The effect of heat generation and absorption in stratified and unstratified flow are examined and hence the influence of stratification on velocity, temperature and concentration are investigated and presented graphically. Further, the impact of the electrophoresis on particle concentration in the presence of generative and destructive reaction is analyzed. As well, the effects of the physical parameters on local and average values of skin friction, Nusselt number and Sherwood number are also investigated and illustrated graphically. The particular solutions of the present results are compared with the existing solution in literature and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Siegel, Trans. ASME, 80, 347 (1958).

    Google Scholar 

  2. B. Gebhart and L. Pera, Int. J. Heat Mass Transfer, 14, 2025 (1971).

    Article  CAS  Google Scholar 

  3. J. D. Hellums and S.W. Churchill, AIChE J., 8, 690 (1962).

    Article  CAS  Google Scholar 

  4. G. D. Callahan and W. J. Marner, Int. J. Heat Mass Transfer, 19, 165 (1976).

    Article  Google Scholar 

  5. V.M. Soundalgekar and P. Ganesan, Int. J. Eng. Sci., 19, 757 (1981).

    Article  Google Scholar 

  6. H. P. Rani and C. N. Kim, Korean J. Chem. Eng., 27, 759 (2010).

    Article  CAS  Google Scholar 

  7. C. C. Chen and R. Eichhorn, ASME J. Heat Transfer, 98, 446 (1976).

    Article  Google Scholar 

  8. K. T. Yang, J. L. Novotny and Y. S. Cheng, Int. J. Heat Mass Transfer, 15, 1097 (1972).

    Article  Google Scholar 

  9. Y. Jaluria and K. Himasekhar, Comput. Fluids, 11, 39 (1983).

    Article  Google Scholar 

  10. D. Angirasa and J. Srinivasan, ASME J. Heat Transfer, 111, 657 (1989).

    Article  CAS  Google Scholar 

  11. J. Srinivasan and D. Angirasa, Int. J. Heat Mass Transfer, 31, 2033 (1998).

    Article  Google Scholar 

  12. S. C. Saha and M. A. Hossain, Non-linear Analysis: Modelling and Control, 9, 89 (2004).

    Google Scholar 

  13. B.V. Rathish Kumar and Shalini Gupta, J. Heat Transfer, 127, 637 (2005).

    Article  Google Scholar 

  14. D. Srinivasacharya and C. RamReddy, Korean J. Chem. Eng., 28, 1824 (2011).

    Article  CAS  Google Scholar 

  15. S. Opiolka, F. Schmidt and H. Fissan, J. Aerosol Sci., 25, 665 (1994).

    Article  CAS  Google Scholar 

  16. R. Tsai, Y. P. Chang and T.Y. Lin, J. Aerosol Sci., 29, 811 (1998).

    Article  CAS  Google Scholar 

  17. R. Tsai and J. S. Huang, Chem. Eng. J., 157, 52 (2010).

    Article  CAS  Google Scholar 

  18. P. L. Chambre and J. D. Young, Phys. Fluids, 1, 48 (1958).

    Article  CAS  Google Scholar 

  19. H. I. Andersson, O. R. Hansin and B. Holmedal, Int. J. Heat Mass Transfer, 37, 659 (1994).

    Article  CAS  Google Scholar 

  20. R. Muthucumaraswamy and P. Ganesan, Acta Mechanica, 147, 45 (2001).

    Article  Google Scholar 

  21. G. Palani and K.Y. Kim, J. Appl. Mechanics and Technical Phys., 52, 57 (2011).

    Article  CAS  Google Scholar 

  22. K. Vajravelu and D. Rollin, Int. J. Non-linear Mechanics, 27, 265 (1992).

    Article  Google Scholar 

  23. W. T. Cheng and C. N. Huang, Chem. Eng. Sci., 59, 771 (2004).

    Article  CAS  Google Scholar 

  24. B. Shanker, B. Prabhakar Reddy and J. Anand Rao, Indian J. Pure Appl. Phys., 48, 157 (2010).

    CAS  Google Scholar 

  25. R. Kandasamy, T. Hayat and S. Obaidat, Nuclear Eng. Design, 241, 2155 (2011).

    Article  CAS  Google Scholar 

  26. Herrmann Schlichting, Boundary layer theory, Wiley, New York (1969).

    Google Scholar 

  27. B. Carnahan, H.A. Luther and J. O. Wilkes, Applied numerical methods, Wiley, New York (1969).

    Google Scholar 

  28. P.V. S. N. Murthy, D. Srinivasacharya and P.V. S. S. S. R. Krishna, J. Heat Transfer, 126, 297 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periyanagounder Ganesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, P., Suganthi, R.K. Free convective flow over a vertical plate in a doubly stratified medium with electrophoresis, heat source/sink and chemical reaction effects. Korean J. Chem. Eng. 30, 813–822 (2013). https://doi.org/10.1007/s11814-012-0201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0201-2

Key words

Navigation