Skip to main content
Log in

CFD study of hydrodynamics behavior of a vibrating fluidized bed using kinetic-frictional stress model of granular flow

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hydrodynamics of a vertically vibrating fluidized bed was studied using an Eulerian-Eulerian two-fluid model (TFM) incorporating the kinetic theory of granular flow and including the frictional stress effects. Influences of frictional stresses, vibration amplitudes and frequency on behavior of the particles were studied. In the case with vertical vibration, the numerical results showed three regions of solid concentration along the bed height: a low particle concentration region near the bottom of the bed, a high concentration region in the middle of the bed, and a transition region at top of the bed. The accuracy of results was found to be closely related to the inclusion of the frictional stresses. Ability of the two-fluid model for predicting the hydrodynamics of vibrating fluidized beds was discussed and confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Geldart, Powder Technol., 7, 285 (1973).

    Article  CAS  Google Scholar 

  2. Y. Mawatari, T. Koide, Y. Tatemoto, T. Takeshita and K. Noda, Adv. Powder Technol., 12, 157 (2001).

    Article  Google Scholar 

  3. Y. Mawatari, T. Koide, Y. Tatemoto, S. Uchida and K. Noda, Powder Technol., 123, 69 (2001).

    Article  Google Scholar 

  4. S. Mori, A. Yamamoto, S. Iwata, T. Haruta, I. Yamada and E. Mizutani, In: (2nd Ed.), AIChE Symp. Ser., 86, 88 (1990).

    CAS  Google Scholar 

  5. Y. Wang, T. Wang, Y. Yang and Y. Jin, Powder Technol., 127, 196 (2002).

    Article  CAS  Google Scholar 

  6. L. Zhenfu, F. Maoming, Z. Yuemin, T. Xiuxiang, C. Qingru and C. Zengqiang, Powder Technol., 187, 119 (2008).

    Article  Google Scholar 

  7. T. Shih-Chang and H. Shu-San, Powder Technol., 194, 159 (2009).

    Article  Google Scholar 

  8. Z. Xuejun, Y. Shichao and P. Xiaoheng, Exp. Therm. Fluid. Sci., 32, 1279 (2008).

    Article  Google Scholar 

  9. S. E. Naeini and J. K. Spelt, Powder Technol., 195, 83 (2009).

    Article  CAS  Google Scholar 

  10. Y. Tatemoto, Y. Mawatari and K. Noda, Chem. Eng. Sci., 60, 5010 (2005).

    Article  CAS  Google Scholar 

  11. Y. Tatemoto, Y. Mawatari, T. Yasukawa and K. Noda, Chem. Eng. Sci., 59, 437 (2004).

    Article  CAS  Google Scholar 

  12. M. D. Mantle, A. J. Sederman, L. F. Gladden, J. M. Huntley, T. W. Martin, R. D. Wildman and M. D. Shattuck, Powder Technol., 179, 164 (2008)

    Article  CAS  Google Scholar 

  13. Z. Xuejun, Y. Shichao and P. Xiaoheng, Exp. Therm. Fluid. Sci., 32, 1279 (2008).

    Article  Google Scholar 

  14. L. Xiang, W. Shuyan, L. Huilin, L. Goudong, C. Juhui and L. Yikun, Powder Technol., 197, 25 (2010).

    Article  Google Scholar 

  15. B. Ren, W. Zhong, B. Jin, Z. Yuan and Y. Lu, Energy Fuels, 25, 4095 (2011).

    Article  CAS  Google Scholar 

  16. M. Oevermann, S. Gerber and F. Behrendt, Particuology, 7, 307 (2009).

    Article  CAS  Google Scholar 

  17. T. Zhao, M. Takei and D.-H. Doh, Flow Meas. Instrum., 21, 212 (2010).

    Article  Google Scholar 

  18. C. H. Ibsen, E. Helland, B. H. Hjertager, T. Solberg, L. Tadrist and R. Occelli, Powder Technol., 149, 29 (2004).

    Article  CAS  Google Scholar 

  19. N. G. Deen, M. Van Sint Annaland, M. A. Van der Hoef and J. A. M. Kuipers, Chem. Eng. Sci., 62, 28 (2007).

    Article  CAS  Google Scholar 

  20. A. Passalacqua and L. Marmo, Chem. Eng. Sci., 64, 2795 (2009).

    Article  CAS  Google Scholar 

  21. W. Zhong, M. Zhang, B. Jin and Z. Yuan, Powder Technol., 175, 90 (2007).

    Article  CAS  Google Scholar 

  22. X. Wang, B. Jin and W. Zhong, Chem. Eng. Process., 48, 695 (2009).

    Article  CAS  Google Scholar 

  23. J. Wang, W. Ge and J. Li, Chem. Eng. Sci., 63, 1553 (2008).

    Article  CAS  Google Scholar 

  24. P. Pei, K. Zhang, J. Ren, D. Wen and G. Wu, Particuology, 8, 425 (2010).

    Article  CAS  Google Scholar 

  25. S. Vun, J. Naser and P. Witt, Powder Technol., 204, 11 (2010).

    Article  CAS  Google Scholar 

  26. L. Huilin, H. Yurong, L. Wentie, D. Jianmin, D. Gidaspow and J. Bouillard, Chem. Eng. Sci., 59, 865 (2004).

    Article  Google Scholar 

  27. W. Shuyan, L. Xiang, L. Huilin, Y. Long, S. Dan, H. Yurong and D. Yonglong, Powder Technol., 196, 184 (2009).

    Article  Google Scholar 

  28. D. J. Patil, M. van Sint Annaland and J. A. M. Kuipers, Chem. Eng. Sci., 60, 57 (2005).

    Article  CAS  Google Scholar 

  29. D. J. Patil, M. van Sint Annaland and J. A. M. Kuipers, Chem. Eng. Sci., 60, 73 (2005).

    Article  CAS  Google Scholar 

  30. S. H. Hosseini, G. Ahmadi, R. Rahimi, M. Zivdar and M. N. Esfahany, Powder Technol., 200, 202 (2010).

    Article  CAS  Google Scholar 

  31. S. H. Hosseini, M. Zivdar and R. Rahimi, Chem. Eng. Process., 48, 1539 (2009).

    Article  CAS  Google Scholar 

  32. A. Srivastava and S. Sundaresan, Powder Technol., 129, 72 (2003).

    Article  CAS  Google Scholar 

  33. S. Azizi, S. H. Hosseini, M. Moraveji and G. Ahmadi, Particuology, 8, 415 (2010).

    Article  CAS  Google Scholar 

  34. M. R. Rahimi and S. Azizi, Chem. Prod. Process Model., 6, 1 (2011).

    Google Scholar 

  35. W. Shuyan, L. Yongjian, W. Lixin, D. Qun and W. Chunsheng, Powder Technol., 199, 238 (2010).

    Article  Google Scholar 

  36. T. Ishikura, H. Nagashima and M. Ide, Powder Technol., 131, 56 (2003).

    Article  CAS  Google Scholar 

  37. P. C. Johnson, P. Nott and R. Jackson, J. Fluid Mech., 210, 501 (1990).

    Article  CAS  Google Scholar 

  38. S. H. Hosseini, G. Ahmadi, B. S. Razavi and W. Q. Zhong, Energy Fuels, 24, 6086 (2010).

    Article  CAS  Google Scholar 

  39. A. Acosta-Iborra, F. Hernández-Jiménez, M. de Vega and J. V. Briongos, Chem. Eng. J., 261, 198 (2012).

    Google Scholar 

  40. X. Zhang and G. Ahmadi, J. Comput. Multiphase Flows, 4, 41 (2012).

    Article  Google Scholar 

  41. J. Ellison, G. Ahmadi, L. Regel and W. Wilcox, Microgravity Sci. Tec., 8, 140 (1995).

    Google Scholar 

  42. D. Ma and G. Ahmadi, Int. J. Multiphase Flow, 16, 341 (1990).

    Article  CAS  Google Scholar 

  43. G. Ahmadi and D. Ma, Int. J. Multiphase Flow, 16, 323 (1990).

    Article  CAS  Google Scholar 

  44. D. Gidaspow, Multiphase flow and fluidization, continuum and kinetic theory descriptions, Academic Press, Boston (1994).

    Google Scholar 

  45. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 51, 635 (1969).

    Article  CAS  Google Scholar 

  46. D. Ma and G. Ahmadi, J. Chem. Phys., 84, 3449 (1986).

    Article  CAS  Google Scholar 

  47. S. Benyahia, M. Syamlal, T. J. O’Brien, “Summary of MFIX Equations 2012-1.” From URL https://mfix.netl.doe.gov/documentation/MFIXEquations2012-1.pdf, January (2012).

  48. B. G. M. van Wachem, J. C. Schouten, R. Krishna, C. M. van den Bleek and J. L. Sinclair, AIChE J., 47, 1035 (2001).

    Article  Google Scholar 

  49. A. Boemer, H. Qi and U. Renz, Int. J. Multiphase Flow, 23, 927 (1997).

    Article  CAS  Google Scholar 

  50. J. Min, J. B. Drake, T. J. Heindel and R. O. Fox, AIChE J., 56, 1434 (2009).

    Google Scholar 

  51. S. Azizi, S. H. Hosseini, G. Ahmadi and M. Moraveji, Chem. Eng. Technol., 33, 421 (2010).

    Article  CAS  Google Scholar 

  52. D. G. Schaeffer, J. Diff. Equ., 66, 19 (1987).

    Article  Google Scholar 

  53. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  54. S. Benyahia, Ind. Eng. Chem. Res., 47, 8926 (2008).

    Article  CAS  Google Scholar 

  55. P. Lettieri, G. Micale, L. Cammarata and D. Colman, Computational fluid-dynamics simulations of gas-fluidized beds: A preliminary investigation of different modelling approaches, In Proceedings of the 10th Germany Workshop on Two-Phase Flow Predictions (2002).

  56. F. Bertola, M. Vanni and G. Baldi, Int. J. Chem. Reactor Eng., 1, A3 (2003).

    Google Scholar 

  57. M. Syamlal, W. Rogers, T. J. O’Brien, MFIX documentation: Theory guide, Tech. Rep. DOE/METC-94/1004 (DE9400087), Morgantown Energy Technology Center, Morgantown, West Virginia (1993).

    Book  Google Scholar 

  58. S. B. Savage, J. Fluid Mech., 377, 1 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Hossein Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi, M.R., Azizi, N., Hosseini, S.H. et al. CFD study of hydrodynamics behavior of a vibrating fluidized bed using kinetic-frictional stress model of granular flow. Korean J. Chem. Eng. 30, 761–770 (2013). https://doi.org/10.1007/s11814-012-0200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0200-3

Key words

Navigation