Skip to main content

Lipase from Penicillium camembertii KCCM 11268: Optimization of solid state fermentation and application to biodiesel production

Abstract

Lipase was produced by Penicillium camembertii KCCM 11268 under solid state fermentation (SSF), and the production process was optimized by using statistical experimental designs. The initial moisture content, cultivation time, inoculum size and concentration of basal medium were considered as the factors of optimum conditions for SSF. P. Camembertii KCCM 11268 was cultivated in SSF using wheat bran as the substrate for lipase production. Under the optimized condition, lipase activity was reached around 7.8 U/ml after eight days fermentation. To partially purify the lipase, ammonium sulfate (80% saturation) was added to the crude lipase solution and concentrated using a diafiltration (VIVAFLOW 50). The concentrated lipase solution from P. Camembertii KCCM 11268 (PCL) was immobilized on silica gel by cross-linking method. Also, PCL was mixed with a commercial lipase solution from Candida rugosa (CRL), and this mixture was co-immobilized on silica gel. The immobilized and co-immobilized lipase activities were 1150.1 and 7924.8 U/g matrix, respectively. Palm oil and methanol were used as substrates and 1mmol of methanol was added every 1.5 h and 2 times during biodiesel production. The reaction was carried out at temperatures of 30, 40, 50, 60 and 70 °C. The maximum biodiesel conversion by co-immobilized lipase was 99% after 5 h at 50 °C.

This is a preview of subscription content, access via your institution.

References

  1. R.G. S. Couto and A. M. Sanroma, J. Food Eng., 76, 291 (2006).

    Article  CAS  Google Scholar 

  2. M. Raimbault, Electron J. Biotechnol., 1, 234 (1998).

    Article  Google Scholar 

  3. N. Pérez-Guerra, A. Torrado-Agrasar, C. López-Macias and L. Pastrana, Agric. Food Chem., 2, 343 (2003).

    Google Scholar 

  4. M. Oda, M. Kaieda, S. Mana, H. Yamaji, A. Kondo, E. Izumoto and H. Fukuda, Biochem. Eng. J., 45–51, 23 (2005).

    Google Scholar 

  5. J. H. Lee, S. B. Kim, C. Park, B. Tae, S. O. Han and S.W. Kim, Biochem. Biotehcnol., 365–371, 161 (2010).

    Google Scholar 

  6. D. H. Lee, C. Park, J. M. Yeo and S.W. Kim, J. Ind. Eng. Chem., 777–782, 12 (2006).

    Google Scholar 

  7. A.V. L. Pizarro and E.Y. Park, Process Biochem., 1077–1082, 38 (2003).

    Google Scholar 

  8. C. J. Shieh, H. F. Liao and C. C. Lee, Bioresour. Technol., 103–106, 88 (2003).

    Google Scholar 

  9. Y. Shimada, Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda and H. Fukuda, J. Am. Oil Chem. Soc., 789–793, 76 (1999).

    Google Scholar 

  10. Y. Shimada, Y. Watanabe, A. Sugihara and Y. Tominaga, J. Mol. Catal. B-Enzym., 133–142, 17 (2002).

    Google Scholar 

  11. P.M. Neilsen, J. Brask and L. Fjerbaek, Biotechnol. Bioeng., 692–700, 110 (2008).

    Google Scholar 

  12. D. H. Lee, J. M. Kim, H.Y. Shin and S.W. Kim, Biotechnol. Bioprocess Eng., 522–525, 11 (2006).

    Google Scholar 

  13. A. F. Hsu, K. Jones, T. A. Fogolia and W.M. Marmer, Biotechnol. Appl. Biochem., 181–186, 36 (2002).

    Google Scholar 

  14. S. Shweta, S. Shweta and M. N. Gupta, Energy Fuels., 154–159, 18 (2004).

    Google Scholar 

  15. J. H. Lee, S. B. Kim, C. Park and S.W. Kim, Bioresour. Technol., s66–s70, 101 (2010).

    Google Scholar 

  16. J. H. Lee, S.B. Kim, S.W. Kang, Y. S. Song, C. Park and S.W. Kim, Bioresour. Technol., 2105–2108, 102 (2011).

    Google Scholar 

  17. J. Cordova, M. Nemmaoui, M. Ismaïli-Alaoui, A. Morin, S. Roussos, M. Raimbault and B. Benjilali, J. Mol. Catal. B Enzymatic, 5, 75 (1998).

    Article  CAS  Google Scholar 

  18. J. H. Lee, D. H. Lee, J. S. Lim, B. H. Um, C. Park and S.W. Kim, J. Microbiol. Biotechnol., 18, 1927 (2008).

    CAS  Google Scholar 

  19. S. B. Kim, J. H. Lee, K. K. Oh, S. J. Lee, J.Y. Lee, J. S. Kim and S.W. Kim, Biotechnol. Biopro. Eng., 16, 725 (2011).

    Article  CAS  Google Scholar 

  20. K. Sunitha, J. K. Lee and T. K. Oh, Bioproc. Eng., 21, 477 (1999).

    CAS  Google Scholar 

  21. B. H. Um and S. H. Bae, Korean J. Chem. Eng., 28, 1172 (2011).

    Article  CAS  Google Scholar 

  22. J. Li, L. Liu, G. Du, J. Chen and W. Tao, Korean J. Chem. Eng., 27, 1233 (2010).

    Article  CAS  Google Scholar 

  23. A. Amrane, V. Prstel and Y. Prigent, J. Gen. Appl. Microbiol., 251–5, 49 (2003).

    Google Scholar 

  24. S. F. Torabi, K. Khajeh, S. Ghasempur, N. Ghaemi and S.O. R. Siadat, J. Biotechnol., 111–20, 131 (2007).

    Google Scholar 

  25. R. Gupta, P. Rathi and S. Bradoo, Crit. Rev. Food Sci. Nutr., 635–44, 43 (2003).

    Google Scholar 

  26. H. S. Krishna and G.N. Karanth, Catal. Rev., 499–591, 44 (2002).

    Google Scholar 

  27. J. Lifka and B. Ondruschka, Chem. Eng. Technol., 1156–9, 27 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Wook Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malilas, W., Kang, S.W., Kim, S.B. et al. Lipase from Penicillium camembertii KCCM 11268: Optimization of solid state fermentation and application to biodiesel production. Korean J. Chem. Eng. 30, 405–412 (2013). https://doi.org/10.1007/s11814-012-0132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0132-y

Key words

  • Penicillium camembertii KCCM 11268
  • Solid State Fermentation
  • Lipase Production
  • Statistical Experimental Design
  • Biodiesel Production
  • Immobilization