Skip to main content
Log in

Development of process model of a rotary kiln for volatile organic compound recovery from coconut shell

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The volatile organic compounds (VOCs) contained in coconut shell are wasted in the carbonization process of coconut shell due to the difficulty of recovery. The VOCs recovery is useful and necessary, because the VOCs are a sustainable energy source, and the recovery is an economically feasible project. A simulation model of the VOC recovery process from coconut shell using a rotary kiln is developed to investigate the process characteristics and the role of model parameters. The model includes the energy and material balances for the processing solid and the gas in the kiln. The validity of the proposed model is partially examined with the experimental results. From the simulation, the dominant heat transfer mechanism is determined for the understanding of the process operation. In addition, the optimal operating conditions of the rotary kiln are found for the use in the design and control of the kiln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cagnon, X. Py, A. Guillot and F. Stoeckli, Micropor. Mesopor. Mater., 57, 273 (2003).

    Article  CAS  Google Scholar 

  2. O. A. Oritiz, G. I. Suárez and A. Nelson, Comput. Chem. Eng., 29, 1837 (2005).

    Article  Google Scholar 

  3. T. Suzuki, T. Okazaki, K. Yamamoto, H. Nakata and O. Fujita, J. Therm. Sci. Eng., 3, 523 (2008).

    CAS  Google Scholar 

  4. T. Suzuki, T. Okazaki, K. Yamamoto, H. Nakata and O. Fujita, J. Therm. Sci. Eng., 3, 532 (2008).

    CAS  Google Scholar 

  5. P. Thammavong, M. Debacq, S. Vitu and M. Dupoizat, Chem. Eng. Technol., 34,707 (2011).

    Article  CAS  Google Scholar 

  6. F. Patisson, E. Lebas, F. Hanrot, D. Ablitzer and J.-L. Houzelot, Metall. Mater., 31B, 381 (2000).

    CAS  Google Scholar 

  7. F. Patisson, E. Lebas, F. Hanrot, D. Ablitzer and J.-L. Houzelot, Metall. Mater., 31B, 391 (2000).

    CAS  Google Scholar 

  8. M. J. Antal, Jr. and M. Gronli, Ind. Eng. Chem. Res., 42, 1619 (2003).

    Article  CAS  Google Scholar 

  9. F. Cangialosi, F. D. Canio, G. Intini, M. Notarnicola, L. Liberti, G. Belz and P. Caramuscio, Fuel, 85, 2294 (2006).

    Article  CAS  Google Scholar 

  10. P. Baggio, M. Baratieri, A. Gasparella and G.A. Longo, Appl. Therm. Eng., 28, 136 (2008).

    Article  CAS  Google Scholar 

  11. Y.N. Chun, S.C. Kim and K. Yoshikawa, Appl. Energy, 88, 1105 (2011).

    Article  CAS  Google Scholar 

  12. H.-Y. Kang, S.-S. Park and Y.-S. Rim, Korean J. Chem. Eng., 23, 948 (2006).

    Article  CAS  Google Scholar 

  13. P. Ji, W. Feng and B. Chen, Ind. Eng. Chem. Res., 48, 3909 (2009).

    Article  CAS  Google Scholar 

  14. C. Tangsathithulchai, Y. Ngernyen and M. Tangsathithulchai, Korean J. Chem. Eng., 26, 1341 (2009).

    Article  Google Scholar 

  15. V. F. Olontsev, I. A. Borisova and E.A. Sazonova, Solid Fuel Chem., 45, 44 (2011).

    Article  CAS  Google Scholar 

  16. W. L. McCabe, P. Harriott and J. C. Smith, Unit operations of chemical engineering, Mc-Graw-Hill, New York (1992).

    Google Scholar 

  17. Y. H. Kim, Korean J. Chem. Eng., 28, 27 (2011).

    Article  CAS  Google Scholar 

  18. S.-W. Rhee, Korean Chem. Eng. Res., 47, 230 (2009).

    CAS  Google Scholar 

  19. E. Benanti, C. Freda, V. Lorefice, G. Braccio and K. Sharma, Therm. Sci., 15, 145 (2011).

    Article  Google Scholar 

  20. X. Li, T. Wang, R. T. Tonti and L. Edwards, Proc. 29th Ind. Energy Tech. Conf., New Orleans, USA (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Han Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H. Development of process model of a rotary kiln for volatile organic compound recovery from coconut shell. Korean J. Chem. Eng. 29, 1674–1679 (2012). https://doi.org/10.1007/s11814-012-0104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0104-2

Key words

Navigation