Skip to main content
Log in

Modeling of Pt-Sn/γ-Al2O3 deactivation in propane dehydrogenation with oxygenated additives

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A reduction in catalyst activity with time-on-stream and formation of side products are the major problems associated with catalytic propane dehydrogenation. Coke formation on the catalyst surface is the most important cause for catalyst deactivation. Experiments have indicated that the presence of very small amounts of oxygenated additives such as water can reduce the amount of coke accumulated on the catalyst surface and enhance catalyst activity. Addition of water beyond an optimum level, however, would result in a loss of activity due to sintering of catalyst. Propane dehydrogenation over a Pt-Sn/γ-Al2O3 catalyst in the temperature range of 575 to 620 °C was investigated in the presence of small amounts of water added to the feed. A monolayer-multilayer mechanism was used to model the coke growth kinetics. Coke deposition and catalyst sintering were considered in a catalyst deactivation model to explain the observed optimum level in the amounts of water added to the feed. The model predictions for both propane conversion and coke formation with time-on-stream were in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liu, S. Zhang, Y. Zhou, Y. Zhang, L. Bai and L. Huang, Ultrason. Sonochem., 18, 19 (2011).

    Article  Google Scholar 

  2. D. Shee and A. Sayari, Appl. Catal. A., 389, 155 (2010).

    Article  CAS  Google Scholar 

  3. J. Gascón, C. Téllez, J. Herguido and M. Menéndez, Appl. Catal. A., 248, 105 (2003).

    Article  Google Scholar 

  4. H. H. Kung, Adv. Catal., 40, 1 (1994).

    Article  CAS  Google Scholar 

  5. E. A. Mamedov and V. CortésCorberan, Appl. Catal. A., 127, 1 (1995).

    Article  CAS  Google Scholar 

  6. R. Brüning, P. Scholz, I. Morgenthal, O. Andersen, J. Scholz, G. Nockeand and B. Ondruschka, Chem. Eng. Technol., 28, 1056 (2005).

    Article  Google Scholar 

  7. T. Blasco and J. M. Lopez Nieto, Appl. Catal. A., 157, 117 (1997).

    Article  CAS  Google Scholar 

  8. Y. Zhang, Y. Zhou, A. Qiu, Y. Wang, Y. Xu and P. Wu, Ind. Eng. Chem. Res., 45, 2213 (2006).

    Article  CAS  Google Scholar 

  9. Ullmann’s Encyclopedia of Industrial Chemistry, Fifth Ed., New York: Wiley-VCH, A.22 (1993).

  10. P. Michorczyk and J. Ogonowski, Appl. Catal. A., 251, 425 (2003).

    Article  CAS  Google Scholar 

  11. M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai and P. R. Pujado, Appl. Catal. A., 221, 397 (2001).

    Article  CAS  Google Scholar 

  12. S.M. Stagg, C. A. Querini, W. E. Alvarez and D. E. Resasco, J. Catal., 168, 75 (1997).

    Article  CAS  Google Scholar 

  13. J. Llorca, N. Homs, J. León, J. Sales, J. L.G. Fierro and P. Ramirez de la Piscina, Appl. Catal. A., 189, 77 (1999).

    Article  CAS  Google Scholar 

  14. M. Mohagheghi, G. Bakeri and M. Saeedizad, Chem. Eng. Technol., 30, 1721 (2007).

    Article  CAS  Google Scholar 

  15. M. P. Lobera, C. Tellez, J. Herguido and M. Menendez, Appl. Catal. A., 349, 156 (2008).

    Article  CAS  Google Scholar 

  16. J. Gascon, C. Tellez, J. Herguido and M. Menendez, Chem. Eng. J., 106, 91 (2005).

    Article  CAS  Google Scholar 

  17. S. K. Sahoo, P.V. C. Rao, D. Rajeshwer, K. R. Krishnamurthy and I. D. Singh, Appl. Catal. A., 244, 311 (2003).

    Article  CAS  Google Scholar 

  18. P.R. Cottrell, L. F. Smith Jr. and S.W. Gohres, US Patent, 5,321,192 (1994).

  19. T. Inui and T. Miyake, J. Catal., 86, 446 (1984).

    Article  CAS  Google Scholar 

  20. M. Fattahi, F. Khorasheh, S. Sahebdelfar, F. Tahriri Zangeneh, K. Ganji and M. Saeedizad, Sci. Iran, 18, 1377 (2011).

    Article  CAS  Google Scholar 

  21. A. Farjoo, F. Khorasheh, S. Niknaddaf and M. Soltani, Sci. Iran, 18, 458 (2011).

    Article  CAS  Google Scholar 

  22. P. Biloen, F. M. Dautzenberg and W. M. H. Sachtler, J. Catal., 50, 77 (1977).

    Article  CAS  Google Scholar 

  23. C. Yu, Q. Ge, H. Xu and W. Li, Ind. Eng. Chem. Res., 46, 8722 (2007).

    Article  CAS  Google Scholar 

  24. R. H. Perry and D.W. Green, Perry’s Chemical Engineers’ Handbook, 6th Ed., McGraw-Hill, New York (1984).

    Google Scholar 

  25. M. van Sint Annaland, J. A. M. Kuipers and W. P. M. van Swaaij, Catal. Today, 66, 427 (2001).

    Article  Google Scholar 

  26. I. S. Nam and J.R. Kittrell, Ind. Eng. Chem. Process Des. Dev., 23, 237 (1984).

    Article  CAS  Google Scholar 

  27. E. Romero, J. C. Rodríguez, J. A. Peña and A. Monzón, Can. J. Chem. Eng., 74, 1034 (1996).

    Article  CAS  Google Scholar 

  28. S. B. Kogan and M. Herskowitz, Catal. Commun., 2, 179 (2001).

    Article  CAS  Google Scholar 

  29. K. R. Devoldere and G. F. Froment, Ind. Eng. Chem. Res., 38, 2626 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Khorasheh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samavati, A., Fattahi, M. & Khorasheh, F. Modeling of Pt-Sn/γ-Al2O3 deactivation in propane dehydrogenation with oxygenated additives. Korean J. Chem. Eng. 30, 55–61 (2013). https://doi.org/10.1007/s11814-012-0095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0095-z

Key words

Navigation