Skip to main content
Log in

Comparison for thermal decomposition and product distribution of chloroform under each argon and hydrogen reaction atmosphere

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thermal reaction studies of diluted mixture (1%) of chloroform (CHCl3) under each argon (Ar) and hydrogen (H2) reaction atmosphere have been investigated to examine the effect of reaction atmosphere on decomposition of CHCl3 and product distributions. The experimental results were obtained over the temperature range 525–900 °C with reaction times of 0.3–2.0 sec. at 1 atm by utilizing an isothermal tubular flow reactor. Complete destruction (>99%) of the parent reagent, CHCl3 was observed near 675 °C under H2 reaction atmosphere (CHCl3/H2 reaction system) and 700 °C under Ar reaction atmosphere (CHCl3/Ar reaction system) with 1 sec reaction time. The CHCl3 pyrolysis yielded more conversion in H2 atmosphere than in Ar atmosphere. Major products in CHCl3/Ar reaction system were C2Cl4, CCl4, C2HCl3 and HCl over a wide temperature range. Hydrocarbon was not found in CHCl3/Ar reaction system. Major products of CHCl3/H2 reaction system observed were CH2Cl2, CH3Cl, CH4, C2Cl4, C2HCl3, C2H2Cl2, C2H3Cl and HCl at 600 °C with 1 sec. reaction time. Non-chlorinated hydrocarbons such as CH4, C2H4 and C2H6 were the major products at above 850 °C. Product distributions were distinctly different in Ar and H2 reaction atmospheres. The H2 gas plays a key role in acceleration of reagent decay and formation of non-chlorinated light hydrocarbons through hydrodechlorination process. The important reaction pathways, based on thermochemical and kinetic principles, to describe the features of reagent decay and intermediate formation under each Ar and H2 reducing reaction atmosphere were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. C. Brunner, Hazardous air emissions from incineration, Chapman and Hall, NY (2005).

    Google Scholar 

  2. W. Tsang, Combust. Sci. Technol., 74, 99 (1990).

    Article  CAS  Google Scholar 

  3. R. Louw, H. Dijks and P. Mulder, Chem. Ind., 19, 759 (1983).

    Google Scholar 

  4. Y. S. Won, Korean J. Chem. Eng., 26, 36 (2009).

    Article  CAS  Google Scholar 

  5. S. C. Chuang and J.W. Bozzelli, Environ. Sci. Technol., 20, 568 (1986).

    Article  CAS  Google Scholar 

  6. Y. P. Wu and Y. S. Won, J. Ind. Eng. Chem., 9, 775 (2003).

    CAS  Google Scholar 

  7. E. T. Oppelt, J. Air Pollution Control Assoc., 37, 558 (1987).

    CAS  Google Scholar 

  8. Y. S. Won, Korean Chem. Eng. Res., 49, 510 (2011).

    Google Scholar 

  9. Y. P. Wu and Y. S. Won, J. Hazard. Mater., B105, 63 (2003).

    Article  Google Scholar 

  10. J. A. Manion and R. Louw, J. Chem. Perk. Trans., 2, 1547 (1988).

    Article  Google Scholar 

  11. Y. S. Won, J. Ind. Eng. Chem., 15, 510 (2009).

    Article  CAS  Google Scholar 

  12. S.W. Benson, Thermochemical Kinetics, John Wiley and Sons, NY (1976).

    Google Scholar 

  13. Y. S. Won and J.W. Bozzelli, Combust. Sci. Technol., 85, 345 (1992).

    Article  CAS  Google Scholar 

  14. F. E. Kung and W. E. Bissinger, J. Org. Chem., 29, 2739 (1964).

    Article  CAS  Google Scholar 

  15. S.W. Benson and G. N. Spokes, 11th Symposium (International) on Combustion, 95 (1966).

  16. K. P. Schug, H. G. Wagner and F. Zabel, Ber. Bunsenges Phys. Chem., 83, 167 (1979).

    Article  CAS  Google Scholar 

  17. I. P. Herman, F. Magnotta, R. J. Buss and Y. T. Lee, J. Chem. Phys., 79, 1789 (1983).

    Article  CAS  Google Scholar 

  18. D. Allara and R. Shaw, Phys. Chem. Ref. Data, 9, 523 (1981).

    Article  Google Scholar 

  19. Y. S. Won and J.W. Bozzelli, Am. Soc. Mech. Eng., HTD 104, 131 (1988).

    Google Scholar 

  20. S.W. Benson and M. Weissman, Int. J. Chem. Kinet., 14, 1287 (1982).

    Article  CAS  Google Scholar 

  21. S. M. Parmar and S.W. Benson, J. Phys. Chem., 92, 2652 (1988).

    Article  CAS  Google Scholar 

  22. J. A. Kerr and S. J. Moss, Handbook of bimolecular and intermolecular gas reactions, CRC Press, Florida (2009).

    Google Scholar 

  23. NIST, Chemical gas kinetics database, Version 5.0 (2008).

  24. Y. S. Won, Ph. D. Thesis, New Jersey Inst. Tech., NJ, USA (1991).

  25. M. Weissman and S.W. Benson, J. Phys. Chem., 87, 243 (1983).

    Article  CAS  Google Scholar 

  26. A.M. Dean, J. Phys. Chem., 89, 4600 (1985).

    Article  CAS  Google Scholar 

  27. Y. S. Won, J. Korean Ind. Chem. Eng., 17, 638 (2006).

    CAS  Google Scholar 

  28. Y. S. Won, J. Ind. Eng. Chem., 13, 400 (2007).

    CAS  Google Scholar 

  29. D. H. Lee, S. D. Kim, B. N. Kim, Y. S. Won and D. H. Han, Korean J. Chem. Eng., 26, 1601 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Soo Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Won, YS. Comparison for thermal decomposition and product distribution of chloroform under each argon and hydrogen reaction atmosphere. Korean J. Chem. Eng. 29, 1745–1751 (2012). https://doi.org/10.1007/s11814-012-0086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0086-0

Key words

Navigation