Skip to main content
Log in

Characterizations of impedance responses in an anode-supported solid oxide fuel cell with an air blowing system

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Effects of operation parameters on impedance responses are characterized to study electrochemical reactions of an anode-supported solid oxide fuel cell (SOFC) in an air blowing operation. The anode-supported SOFC, which consists of Ni-yttrium stabilized zirconia (YSZ) support/Ni-YSZ anode functional layer/YSZ electrolyte/gadolinium doped ceria (GDC) interlayer/La0.6Sr0.4Co0.2Fe0.8O3-δ -GDC cathode, is fabricated by a tape casting and co-firing process. To investigate the electrochemical response on impedances, an equivalent circuit is modeled with five elements and fitted by the complex nonlinear least square (CNLS) method. Based on the impedance spectra with the operation parameters, two among five elements are clarified to be concerned with anodic reactions and another two concerned with gas diffusion reactions in electrodes. It is difficult to clarify one among five elements with the results here. The clarified elements may be used to study the effects of materials and processes for SOFC with impedance responses, which will be helpful to improve the performance and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Energy Technology Laboratory, Fuel Cell Handbook seventh ed. DOE/NETL-2004/1206 (2004).

  2. S.C. Singhal and K. Kendal, High temperature solid oxide fuel cells fundamentals design and applications, Elsevier Ltd., Oxford, England (2003).

    Google Scholar 

  3. J. Larminie and A. Dicks, Fuel cell systems explained, second Ed., John Wiley & Sons, West Sussex, England (2003).

    Google Scholar 

  4. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).

    Article  CAS  Google Scholar 

  5. S. Hui, J. Roller, S. Yick, X. Zhang, C. Decès-Petit, Y. Xie, R. Maric and D. Ghosh, J. Power Sources, 172, 493 (2007).

    Article  CAS  Google Scholar 

  6. F. Tietz, H. P. Buchkremer and D. Stöver, Solid State Ionics, 152–153, 373 (2002).

    Article  Google Scholar 

  7. S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cell, Elsevier (2004).

  8. F. Zhao and A. V. Virkar, J. Power Sources, 141, 79 (2005).

    Article  CAS  Google Scholar 

  9. H. Moon, S. D. Kim, S. H. Hyun and H. S. Kim, Int. J. Hydrog. Energy, 33, 1758 (2008).

    Article  CAS  Google Scholar 

  10. W. Bao, Q Chang and G. Meng, J. Mem. Sci., 259, 103 (2005).

    Article  CAS  Google Scholar 

  11. K. C. Wincewicz and J. S. Cooper, J. Power Sources, 140, 280 (2005).

    Article  CAS  Google Scholar 

  12. V. A.C. Haanappel, J. Mertens and J. Malzbender, J. Power Sources, 171, 789 (2007).

    Article  CAS  Google Scholar 

  13. F. Zhao and A. V. Virkar, J. Power Sources, 141, 79 (2005).

    Article  CAS  Google Scholar 

  14. Y. Wang, M. E. Walter, K. Sabolsky and M.M. Seabaugh, Solid State Ionics, 177, 1517 (2006).

    Article  CAS  Google Scholar 

  15. K. Sato, H. Abea, T. Misono, K. Murata, T. Fukui and M. Naito, J. Eur. Cera. Soc., 29, 1119 (2009).

    Article  CAS  Google Scholar 

  16. J. A. Kilner, R. A. De Souza and I. C. Fullarton, Solid State Ionics, 86–88, 703 (1996).

    Article  Google Scholar 

  17. J. Fleig, Annu. Rev. Mater. Res., 33, 361 (2003).

    Article  CAS  Google Scholar 

  18. V.V. Srdic, R. P. Omorjan and J. Seidel, Mater. Sci. Eng. B, 116, 119 (2005).

    Article  Google Scholar 

  19. E. P. Murray, M. J. Sever and S. A. Barnett, Solid State Ionics, 148, 27 (2002).

    Article  Google Scholar 

  20. V. A. C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold and F. Tietz, J. Power Sources, 141, 216 (2005).

    Article  CAS  Google Scholar 

  21. J. H. Kim, Y.M. Park and H. Kim, J. Power Sources, 196, 3544 (2011).

    Article  CAS  Google Scholar 

  22. S. P. Jiang, Solid State Ionics, 146, 1 (2002).

    Article  CAS  Google Scholar 

  23. M. J. Jørgensen and M. Mogensen, J. Electrochem. Soc., 148, A433 (2001).

    Article  Google Scholar 

  24. A. Mai, V. A.C. Haanappel, S. Uhlenbruck, F. Tietz and D. Stver, Solid State Ionics, 177, 2103 (2006).

    Article  CAS  Google Scholar 

  25. Y. Teraoka, H.M. Zhang, K. Kamoto and N. Yamazoe, Mater. Res. Bull., 23, 51 (1988).

    Article  CAS  Google Scholar 

  26. J. Fleig, J. Power Sources, 105, 228 (2002).

    Article  CAS  Google Scholar 

  27. V. A.C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W.W. Herzhof, D. Sebold and F. Tietz, J. Power Sources, 141, 216 (2005).

    Article  CAS  Google Scholar 

  28. S. B. Adler, J. A. Lane and B. C. H. Steele, J. Electrochem. Soc., 143, 3554 (1996).

    Article  CAS  Google Scholar 

  29. J. A. Kilner, R. A. De Souza and I. C. Fullarton, Solid State Ionics, 86–88, 703 (1996).

    Article  Google Scholar 

  30. J. Fleig, Annu. Rev. Mater. Res., 33, 361 (2003).

    Article  CAS  Google Scholar 

  31. V. Srdic, R. P. Omorjan and J. Seidel, Mater. Sci. Eng. B., 116, 119 (2005).

    Article  Google Scholar 

  32. Q. Huanga, R. Hui, B. Wang and J. Zhang, Electrochim. Acta, 52, 8144 (2007).

    Article  Google Scholar 

  33. A. Leonide, B. Rüger, A. Weber, W. A. Meulenberg and E. Ivers-Tiffée, J. Electrochem. Soc., 157, B234 (2010).

    Article  CAS  Google Scholar 

  34. V. Sonn, A. Leonide and E. Ivers-Tiffée, J. Electrochem. Soc., 155, B675 (2008).

    Article  CAS  Google Scholar 

  35. A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffee, ECS Transaction, 7(1), 521 (2007).

    Article  Google Scholar 

  36. A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffee, J. Electrochem. Soc., 155(1), B36 (2007).

    Article  Google Scholar 

  37. A. Weber, International symposium on diagnostics tools fuel cell technologies (2009).

  38. H. Schichlein, A.C. Muller, M. Voigts, A. Krugel and E. Ivers-Tiffee, J. App. Electrochem., 32, 875 (2002).

    Article  CAS  Google Scholar 

  39. V. Sonn, A. Leonide and Ivers-Tiffée, ECS Transactions, 7(1), 1363 (2007).

    Article  CAS  Google Scholar 

  40. A. Liliy, Y. X. Dunyushkin, S. B. Lu and Adlera, J. Electrochem. Soc., 152, A1668 (2005).

    Article  Google Scholar 

  41. H. Kuboyama, T. Shoho and M. Matsunaga, Electrochem. Proc., 97, 404 (1997).

    Google Scholar 

  42. R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y. L. Liu and P.V. Hendriksen, J. Electrochem. Soc., 154(4), B371 (2007).

    Article  CAS  Google Scholar 

  43. C. Endler, A. Leonide, A. Weber, F. Tietz and E. Ivers-Tiffée, J. Electrochem. Soc., 157(2), B292 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haekyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Park, Y.M. & Kim, H. Characterizations of impedance responses in an anode-supported solid oxide fuel cell with an air blowing system. Korean J. Chem. Eng. 29, 1541–1548 (2012). https://doi.org/10.1007/s11814-012-0037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0037-9

Key words

Navigation