Skip to main content
Log in

Surface recession mechanism of carbon fiber reinforced plastic layer by thermal decomposition

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We tested the thermal resistance of a carbon-fiber-reinforced fuel storage tank by using the simulations and the experiments. A model describing the one-dimensional heat transfer in a composite wall exposed to a flame was developed. As a moving boundary condition, the thickness recession is expressed by the one-step Arrhenius-type decomposition kinetics. The differential equations are solved by the Crank-Nicolson method, the algorithm of which is developed by us. For the experimental verification of the simulation, the well-controlled heat is added to one side of the square specimen taken from a carbon-fiber-wounded epoxy cylinder and the change in mass of the specimen is recorded as time passes. From the comparison of the results of two methodologies, it is hypothesized that the normalized thickness by the initial value should be always equal to the normalized mass by the initial value at a certain time. As a result, the surface recession data obtained by the simulations provide good predictions for those by the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Thesken, P. L.N. Murthy, S. L. Phoenix, N. Greene, J.L. Palko, J. Eldridge, J. Sutter, R. Saulsberry and H. Beeson, NASA/TM-2009-215684 (2009).

  2. G. A. Pering, P.V. Farrel and G. S. Springer, J. Comp. Mater., 14, 54 (1980).

    CAS  Google Scholar 

  3. G. S. Springer, J.Reinforced Plastics and Compo., 3, 85 (1984).

    Article  CAS  Google Scholar 

  4. J.B. Henderson, J. A. Wiebelt and M. R. Tant, J. Comp. Mater., 19, 579 (1985).

    Article  CAS  Google Scholar 

  5. J. K. Chen, C. T. Sun and C. I. Chang, J. Comp. Mater., 19, 408 (1985).

    Article  CAS  Google Scholar 

  6. N. Dodds, A.G. Gibson, D. Dewhurst and J.M. Davis, Compo.: Part A, 31, 689 (2000).

    Article  Google Scholar 

  7. P. Krysl, W.T. Ramroth, L.K. Stewart and R. J. Asaro, Int. J. Numer. Meth. Eng., 61, 49 (2004).

    Article  Google Scholar 

  8. J. Trelles and B. Y. Lattimer, Fire Mater., 31, 147 (2007).

    Article  CAS  Google Scholar 

  9. Y. Bai, T. Vallée and T. Keller, Compo. Sci. Technol., 68, 47 (2008).

    Article  CAS  Google Scholar 

  10. Y. M. Sohn, S.W. Baek and T. Kashiwagi, Combust. Sci. Technol., 145, 83 (1999).

    Article  CAS  Google Scholar 

  11. A. P. Mouritz and Z. Mathys, Compo. Sci. Technol., 61, 475 (2001).

    Article  CAS  Google Scholar 

  12. A.G. Gibson, P. N.H. Wright, Y. S. Wu, A. P. Mouritz, Z. Mathys and C. P. Gardiner, Plastics, Rubber and Compo., 32, 81 (2003).

    Article  CAS  Google Scholar 

  13. C. P Gardiner, Z. Mathys and A. P. Mouritz, Marin Struct., 17, 53 (2004).

    Article  Google Scholar 

  14. P. J. Burchill, Z. Mathys and C. P. Gardiner, Fire Mater., 29, 249 (2005).

    Article  CAS  Google Scholar 

  15. C. A. Griffis, R. A. Masumura and C. I. Chang, J. Comp. Mater., 15, 427 (1981).

    Article  Google Scholar 

  16. M. Kindelan and A. Liñán, Acta Astronaut., 5, 1199 (1978).

    Article  CAS  Google Scholar 

  17. T. Keller, C. Tracy and A. Zhou, Compo.: Part A, 37, 1286 (2006).

    Article  Google Scholar 

  18. J. E. J. Staggs, Polym. Degrad. Stabil., 82, 297 (2003).

    Article  CAS  Google Scholar 

  19. R. E. Lyon and J.G. Quintiere, Combust. Flame, 151, 551 (2007).

    Article  CAS  Google Scholar 

  20. ISO 5660-1 (2002).

  21. B. Schartel and T. R. Hull, Fire and Mater., 31, 327 (2007).

    Article  CAS  Google Scholar 

  22. B. T. Rhodes and J. G. Quintiere, Fire Safety J., 26, 221 (1996).

    Article  CAS  Google Scholar 

  23. S. R. Wasan, P. Rauwoens, J. Vierendeel and B. Merci, Fire and Mater., 35, 261 (2011).

    Article  CAS  Google Scholar 

  24. F. JIa, E. R. Galea and M. K. Patel, Fire Mater., 23, 71 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Kim, K.S. & Kim, H. Surface recession mechanism of carbon fiber reinforced plastic layer by thermal decomposition. Korean J. Chem. Eng. 29, 1508–1515 (2012). https://doi.org/10.1007/s11814-012-0036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0036-x

Key words

Navigation