Skip to main content
Log in

Investigating the processes of contaminant removal in Fe0/H2O systems

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The instability of the premise of direct quantitative contaminant reduction by elemental iron (Fe0) materials in Fe0/H2O systems is pointed out. Basic knowledge of aqueous iron corrosion shows that the Fe0 surface is not available for decontamination in nature. A comparison of the reactivity of Fe0 and Zn0 shows that the effectiveness of Fe0 materials for environmental remediation is due to the formation of a non-adhesive, porous oxide scale on Fe0. Contaminants are enmeshed within the scale and possibly reduced by FeII and H/H2. An evaluation of current experimental conditions shows that well-mixed batch systems have disturbed the process of scale formation. Therefore, the majority of published works have operatively created conditions for contaminant reduction that are not likely to occur in nature. Since working under such unrealistic conditions has mediated the above-mentioned premise, interactions in Fe0/H2O systems yielding contaminant removal should be revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bigg and S. J. Judd, Environ. Technol., 21, 661 (2000).

    Article  CAS  Google Scholar 

  2. D.-I. Song, Y. H. Kim and W. S. Shin, Korean J. Chem. Eng., 22, 67 (2005).

    Article  CAS  Google Scholar 

  3. J. E. Yang, J. S. Kim, Y. S. Ok, S.-J. Kim and K.-Y. Yoo, Korean J. Chem. Eng., 23, 935 (2006).

    Article  CAS  Google Scholar 

  4. A. D. Henderson and A. H. Demond, Environ. Eng. Sci., 24, 401 (2007).

    Article  CAS  Google Scholar 

  5. J.-H. Choi, S. J. Choi and Y.-H. Kim, Korean J. Chem. Eng., 25, 493 (2008).

    Article  CAS  Google Scholar 

  6. A. B. Cundy, L. Hopkinson and R. L. D. Whitby, Sci. Tot. Environ., 400, 42 (2008).

    Article  CAS  Google Scholar 

  7. J. Ryu, D. J. Suh, Y.-K. Park and Y.-W. Suh, Korean J. Chem. Eng., 25, 1377 (2008).

    Article  CAS  Google Scholar 

  8. R. Thiruvenkatachari, S. Vigneswaran and R. Naidu, J. Ind. Eng. Chem., 14, 145 (2008).

    CAS  Google Scholar 

  9. B. H. Kim, C. Park, Y.-B. Kim, D. S. Jung, H.-C. Cho, S. H. Park, D.-G. Ra, D.-J. Lee and S.-C. Jung, Korean J. Chem. Eng., 26, 1795 (2009).

    Article  CAS  Google Scholar 

  10. M.-C. Shin, J.-S. Yang, G.-Y. Park and K. Baek, Korean J. Chem. Eng., 28, 1047 (2011).

    Article  CAS  Google Scholar 

  11. S. Comba, A. Di Molfetta and R. Sethi, Water Air Soil Pollut., 215, 595 (2011).

    Article  CAS  Google Scholar 

  12. M. Gheju, Water Air Soil Pollut., 222, 103 (2011).

    Article  CAS  Google Scholar 

  13. T. K. Tokunaga, J. Wan, A. Lanzirotti, S. R. Sutton, M. Newville and W. Rao, Environ. Sci. Technol., 41, 4326 (2007).

    Article  CAS  Google Scholar 

  14. D. Rai, L. E. Eary and J. M. Zachara, Sci. Total Environ., 86, 15 (1989).

    Article  CAS  Google Scholar 

  15. K. J. Cantrell, D. I. Kaplan and T.W. Wietsma, J. Hazard. Mater, 42, 201 (1995).

    Article  CAS  Google Scholar 

  16. C. Noubactep, G. Meinrath, P. Dietrich and B. Merkel, Environ. Sci. Technol., 37, 4304 (2003).

    Article  CAS  Google Scholar 

  17. C. Noubactep, G. Meinrath and B. J. Merkel, Environ. Chem., 2, 235 (2005).

    Article  CAS  Google Scholar 

  18. L. E. Eary and D. Rai, Environ. Sci. Technol., 22, 972 (1988).

    Article  CAS  Google Scholar 

  19. L. E. Eary and D. Rai, Soil Sci. Soc. Am. J., 55, 676 (1991).

    Article  CAS  Google Scholar 

  20. R.W. Gillham and S. F. O’Hannesin, Ground Water, 32, 958 (1994).

    Article  CAS  Google Scholar 

  21. L. J. Matheson and P.G. Tratnyek, Environ. Sci. Technol., 28, 2045 (1994).

    Article  CAS  Google Scholar 

  22. D.W. Blowes, C. J. Ptacek and J. L. Jambor, Environ. Sci. Technol., 31, 3348 (1997).

    Article  CAS  Google Scholar 

  23. I. J. Buerge and S. J. Hug, Environ. Sci. Technol., 31, 1426 (1997).

    Article  CAS  Google Scholar 

  24. C.E. Butler and F.K. Hayes, Environ. Sci. Technol., 35, 3884 (2001).

    Article  CAS  Google Scholar 

  25. B. Hua and B. Deng, Environ. Sci. Technol., 37, 4771 (2003).

    Article  CAS  Google Scholar 

  26. D. R. Lovley, J. L. Fraga, J. D. Coates and E. L. Blunt-Harris, Environ. Microbiol., 1, 89 (1999).

    Article  CAS  Google Scholar 

  27. D. R. Lovley, M. J. Baedecker, D. J. Lonergan, I. M. Cozzarelli, E. J. P. Phillips and D. I. Siegel, Nature, 339, 297 (1989).

    Article  CAS  Google Scholar 

  28. R.W. Gillham, Ground Water Monit. Remed., 23, 6 (2003).

    Article  Google Scholar 

  29. C. Noubactep, Open Environ. J., 1, 9 (2007).

    Article  CAS  Google Scholar 

  30. A. de la Rive, Ann. Chim. Phys., 43, 425 (1830).

    Google Scholar 

  31. R. Balasubramaniam, K. A.V. Ramesh and P. Dillmann, Current Sci., 85, 1546 (2003).

    CAS  Google Scholar 

  32. A. E. Lewis, Hydrometallurgy, 104, 222 (2010).

    Article  CAS  Google Scholar 

  33. J. A. Campbell, Allgemeine Chemie, VCH Weinheim (1990).

  34. R. E. Dickerson, H. B. Gray and G. P. Haight Jr., Chemical Principles, Benjamin/Cummings Inc. London, Amsterdam (1979).

    Google Scholar 

  35. N. Cabrera and N. F. Mott, Rep. Prog. Phys., 12, 163 (1949).

    Article  CAS  Google Scholar 

  36. E. R. Wilson, Ind. Eng. Chem., 15, 127 (1923).

    Article  Google Scholar 

  37. P. Schmuki, J. Solid State Electrochem., 6, 145 (2002).

    Article  CAS  Google Scholar 

  38. G. Bohnsack, Chlorid und die Korrosion von Eisen und Stahl in natürlichen Wässer, 1989 (Vulkan, Essen).

    Google Scholar 

  39. G. E. Brown Jr., V. E. Henrich, W. H. Casey, D. L. Clark, C. Eggleston, A. Felmy, D.W. Goodman, M. Grätzel, G. Maciel, M. I. McCarthy, K. H. Nealson, D.A. Sverjensky, M. F. Toney and J. M. Zachara, Chem. Rev., 99, 77 (1999).

    Article  CAS  Google Scholar 

  40. S. C. Hendy, N. J. Laycock and M. P. Ryan, J. Electrochem. Soc., B152, 271 (2005).

    Article  Google Scholar 

  41. M.M. Scherer, B. A. Balko and P.G. Tratnyek, The role of oxides in reduction reactions at the metal-water interface. In Kinetics and mechanism of reactions at the mineral/water interface (Eds D. Sparks, T. Grundl) American Chemical Society: Washington, DC, 301–322 (1999).

    Chapter  Google Scholar 

  42. M. F. Toney, A. J. Davenport, L. J. Oblonsky, M. P. Ryan and C. M. Vitus, Phys. Rev. Lett., 79, 4282 (1997).

    Article  CAS  Google Scholar 

  43. M. S. Odziemkowski and R. P. Simpraga, Can. J. Chem. Rev. Can. Chim., 82, 1495 (2004).

    Article  CAS  Google Scholar 

  44. E. J. Weber, Environ. Sci. Technol., 30, 716 (1996).

    Article  CAS  Google Scholar 

  45. D. J. Gaspar, A. S. Lea, M. H. Engelhard, D. R. Baer, R. Miehr and P. G. Tratnyek, Langmuir, 18, 7688 (2002).

    Article  CAS  Google Scholar 

  46. Y. Gerasimov, V. Dreving, E. Eremin, A. Kiselev, V. Lebedev, G. Panchenkov and A. Shlygin, Physical Chemistry, MIR Moscow (1985).

    Google Scholar 

  47. A. F. White and M. L. Paterson, Geochim. Cosmochim. Acta, 60, 3799 (1996).

    Article  CAS  Google Scholar 

  48. D. Naka, D. Kim and T. J. Strathmann, Environ. Sci. Technol., 40, 3006 (2006).

    Article  CAS  Google Scholar 

  49. D. Mishra and J. Farrell, Environ. Sci. Technol., 39, 645 (2005).

    Article  CAS  Google Scholar 

  50. M. Stratmann and J. Müller, Corros. Sci., 36, 327 (1994).

    Article  CAS  Google Scholar 

  51. C. Noubactep, Environ. Technol., 29, 909 (2008).

    Article  CAS  Google Scholar 

  52. P. R. Anderson and M. M. Benjamin, Environ. Sci. Technol., 19, 1048 (1985).

    Article  CAS  Google Scholar 

  53. B. K. Lavine, G. Auslander and J. Ritter, Microchem. J., 70, 69 (2001).

    Article  CAS  Google Scholar 

  54. C.G. Schreier and M. Reinhard, Chemosphere, 29, 1743 (1994).

    Article  CAS  Google Scholar 

  55. D.W. Blowes, C. J. Ptacek, S.G. Benner, W. T. Mcrae Che, T. A. Bennett and R.W. Puls, J. Contam. Hydrol., 45, 123 (2000).

    Article  CAS  Google Scholar 

  56. P.G. Tratnyek, M.M. Scherer, T. J. Johnson and L. J. Matheson, Permeable reactive barriers of iron and other zero-valent metals. In Chemical Degradation Methods for Wastes and Pollutants: Environmental and Industrial Applications (Ed M.A. Tarr), 371–421, Marcel Dekker: New York (2003).

    Google Scholar 

  57. S. D Warner and D. Sorel, Ten years of permeable reactive barriers: lessons learned and future expectations. In Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup (Eds S.M. Henry, S.D., Warner), 36–50, American Chemical Society: Washington, DC, ACS Symp., Ser. 837 (2003).

    Google Scholar 

  58. L. Wang, P. Li, Z. Wu, J. Yan, M. Wang and Y. Ding, Synthesis, 13, 2001 (2003).

    Article  Google Scholar 

  59. E. U. Franck, J. Chem. Thermodynamics, 19, 225 (1987).

    Article  CAS  Google Scholar 

  60. A. Agrawal and P. G. Tratnyek, Environ. Sci. Technol., 30, 153 (1996).

    Article  CAS  Google Scholar 

  61. M.M. Scherer, K. Johnson, J. C. Westall and P.G. Tratnyek, Environ. Sci. Technol., 35, 2804 (2001).

    Article  CAS  Google Scholar 

  62. A. J. Béchamp, Ann. Chim. Phys., 42(3), 186 (1854).

    Google Scholar 

  63. K. Swaminathan, P. N. Anantharaman, G. S. Subramanian and H. V. K. Udupa, J. Appl. Electrochem., 2, 169 (1972).

    Article  CAS  Google Scholar 

  64. A. D. Mercer and E. A. Lumbard, Brit. Corr. J., 30, 43 (1995).

    CAS  Google Scholar 

  65. C. Noubactep, G. Meinrath, P. Dietrich, M. Sauter and B. Merkel, Environ. Chem., 2, 71 (2005).

    Article  CAS  Google Scholar 

  66. S. Choe, Y.Y. Chang, K.Y. Hwang and J. Khim, Chemosphere, 41, 1307 (2000).

    Article  CAS  Google Scholar 

  67. H. Song and E. R. Carraway, Environ. Eng. Sci., 23, 272 (2006).

    Article  CAS  Google Scholar 

  68. R. D. Vidic and M. T. Suidan, Environ. Sci. Technol., 25, 1612 (1991).

    Article  CAS  Google Scholar 

  69. C. Noubactep, A. Schöner and G. Meinrath, J. Hazard. Mater., B132, 202 (2006).

    Article  Google Scholar 

  70. S. R. Qiu, H.-F. Lai, M. J. Roberson, M. L. Hunt, C. Amrhein, L. C. Giancarlo, G.W. Flynn and J. A. Yarmoff, Langmuir, 16, 2230 (2000).

    Article  CAS  Google Scholar 

  71. C. Noubactep, Water SA, 36, 663 (2010).

    Article  CAS  Google Scholar 

  72. S.-W. Jeen, R.W. Gilham and A. Przepiora, J. Contam. Hydrol., 123, 50 (2011)

    Article  CAS  Google Scholar 

  73. C. Noubactep, Environ. Progr. Sust. En., 29, 286 (2010).

    Article  CAS  Google Scholar 

  74. C. Noubactep, Freiberg Online Geol., 27, ISSN 1434-7512 (2011).

  75. C. Noubactep, Water SA, 37, 419 (2011).

    Article  CAS  Google Scholar 

  76. C. Noubactep, Fres. Environ. Bull., 20, 2632 (2011).

    CAS  Google Scholar 

  77. M.R. Powell, W.R. Puls, K. S Hightower and A. D. Sebatini, Environ. Sci. Technol., 29, 1913 (1995).

    Article  CAS  Google Scholar 

  78. C. Noubactep and S. Caré, J. Hazard. Mater., 189, 809 (2011).

    Article  CAS  Google Scholar 

  79. C. Noubactep, S. Caré and R. A. Crane, Water Air Soil Pollut., DOI:10.1007/s11270-011-0951-1 ( 2011).

  80. B. Gu, L. Liang, M. J. Dickey, X. Yin and S. Dai, Environ. Sci. Technol., 32, 3366 (1998).

    Article  CAS  Google Scholar 

  81. J.Y. Bottero, A. Manceau, F. Villieras and D. Tchoubar, Langmuir, 10, 316 (1994).

    Article  CAS  Google Scholar 

  82. R. J. Crawford, I. H. Harding and D. E. Mainwaring, Langmuir, 9, 3057 (1993).

    Article  CAS  Google Scholar 

  83. A. Bojic, M. Purenovic and D. Bojic, Water SA, 30, 353 (2004).

    CAS  Google Scholar 

  84. A. Lj. Bojic, D. Bojic and T. Andjelkovic, Water SA, 33, 297 (2007).

    CAS  Google Scholar 

  85. A. Bojic, D. Bojic and T. Andjelkovic, J. Hazard. Mater., 168, 813 (2009).

    Article  CAS  Google Scholar 

  86. C. Noubactep and A. Schöner, J. Hazard. Mater., 175, 1075 (2010).

    Article  CAS  Google Scholar 

  87. C. Noubactep, A. Schöner and M. Sauter, Significance of oxide-film in discussing the mechanism of contaminant removal by elemental iron materials. In “Photo-Electrochemistry & Photo-Biology for the Sustainablity”; S. Kaneco, B. Viswanathan, H. Katsumata (Eds.), Bentham Science Publishers, 1, 89–110 (2011).

  88. R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons Inc. (2003).

  89. U. Schwertmann, Nature, 212, 645 (1966).

    Article  CAS  Google Scholar 

  90. Y. You, J. Han, P.C. Chiu and Y. Jin, Environ. Sci. Technol., 39, 9263 (2005).

    Article  CAS  Google Scholar 

  91. J. A. Lackovic, N. P. Nikolaidis and G.M. Dobbs, Environ. Eng. Sci., 17, 29 (2000).

    Article  CAS  Google Scholar 

  92. S. J. Morrison, D. R. Metzler and B. P. Dwyer, J. Contam. Hydrol., 56, 99 (2002).

    Article  CAS  Google Scholar 

  93. E. Sikora and D. D. Macdonald, J. Electrochem. Soc., 147, 4087 (2000).

    Article  CAS  Google Scholar 

  94. G. Lee, S. Rho and D. Jahng, Korean J. Chem. Eng., 21, 621 (2004).

    Article  CAS  Google Scholar 

  95. R.W. Gillham, Development of the granular iron permeable reactive barrier technology (good science or good fortune). In “Advances in environmental geotechnics: proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8–10, 2009”; Y. Chen, X. Tang, L. Zhan (Eds); Springer Berlin/London, 5–15 (2010).

  96. C. Noubactep, Fresen. Environ. Bull., 19, 1661 (2010).

    CAS  Google Scholar 

  97. C. Noubactep and S. Caré, Chem. Eng. J., 163, 454 (2010).

    Article  CAS  Google Scholar 

  98. C. Noubactep, Chem. Eng. J., 165, 740 (2010).

    Article  CAS  Google Scholar 

  99. D. D. J. Antia, Sustainability, 2, 2988 (2010).

    Article  CAS  Google Scholar 

  100. D. E. Giles, M. Mohapatra, T.B. Issa, S. Anand and P. Singh, J. Environ. Manage., 92, 3011 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chicgoua Noubactep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noubactep, C. Investigating the processes of contaminant removal in Fe0/H2O systems. Korean J. Chem. Eng. 29, 1050–1056 (2012). https://doi.org/10.1007/s11814-011-0298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0298-8

Key words

Navigation