Skip to main content
Log in

The influence of activated carbon support on nitrate reduction by Fe(0) nanoparticles

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Activated Carbon supported Fe(0) nanoparticles (AC-Fe(0)) were applied to the reductive removal of nitrate to investigate the effects of AC support on the reactivity of Fe(0) nanoparticle. XRD, SEM and EDS, XPS analyses on AC-Fe(0) revealed that AC-Fe(0) is more susceptible to oxidation compared to the unsupported Fe(0) nanoparticles, and that the extent of oxidation of the AC-Fe(0) particles will vary depending on the ratios of AC to Fe(0). Nitrate reduction rate of AC-Fe(0) was much slower than that of unsupported Fe(0) nanoparticles. AC-Fe(0) (0.5: 1) particles reduced the nitrate to ca. 40% of the initial concentration, and AC-Fe(0) (5: 1) particles performed poorly with only 10% removal of the nitrate. Besides the deactivation of AC-Fe(0) due to corrosion of Fe(0), the mass transport limitation caused by the thick layering of Fe(0) on porous AC seemed to be another negative factor for the decreased reactivity of AC-Fe(0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kroschwitz and M. How-Grant, Eds. Encyclopedia of chemical technology, 4th Ed., J. Wiley & Sons, New York, 5. 340 (1993).

    Google Scholar 

  2. J.-J. Li, X.-Y. Xu, Z. Jiang, Z.-P. Hao and C. Hu, Environ. Sci. Technol., 39, 1319 (2005).

    Article  CAS  Google Scholar 

  3. M. Cho, E. Kim, K.-H. Lee and S. Ahn, J. Environ. Sci., 17, 711 (2008).

    Article  Google Scholar 

  4. S. M. Ponder, J.G. Darab and T. E. Mallouk,. Environ. Sci. Technol., 34, 2564 (2000).

    Article  CAS  Google Scholar 

  5. M. S. Ponder and T. E. Mallouk, U. S. Patent, 6,689, 485 B2 (2004).

    Google Scholar 

  6. J.G. Darab, A. B. Amonette, D. S. D. Burke and R. D. Orr, Chem. Mater., 19, 5703 (2007).

    Article  CAS  Google Scholar 

  7. B.-W. Zhu, T.-T. Lim and J. Feng, Chemosphere, 65, 1137 (2006).

    Article  CAS  Google Scholar 

  8. L. Wu, M. Shamsuzzoha and S.M.C. Ritchie, J. Nanopart. Res., 7, 469 (2005).

    Article  CAS  Google Scholar 

  9. United States Environmental Protection Agency, National water quality inventory, EPA 816-R-00-013; USEPA Office of Water: Washington, DC, August (2000).

    Google Scholar 

  10. H. H. Comly, J. Am. Med. Assoc., 129, 112 (1945).

    Article  CAS  Google Scholar 

  11. P. J. Weyer, J. R. Cerhan, B. C. Kross, G. R. Hallberg, J. Kantamneni, G. Breuer, M. P. Jones, W. Zheng and C. Lynch, Epidemiology, 12, 327 (2001).

    Article  CAS  Google Scholar 

  12. United States Environmental Protection Agency. National Primary Drinking Water Regulations: Contaminant Specific Fact Sheets, Inorganic Chemicals, Technical Version; 811-F-95-002a-T; USEPA Office of Water, Washington, DC, (1995). Korean Minister of Environment, Drinking Water Quality Management 5-3 (2011).

    Google Scholar 

  13. The EU Water Framework Directive, European Commission Environment (2000).

  14. N. P. Cheremisinoff and P. N. Cheremisinoff, Carbon adsorption for pollution control, PTR Prentice Hall, 19 (1993).

  15. G. N. Glavee, K. J. Klabunde, C.M. Sorensen and G. C. Hadjipanayis, Inorg. Chem., 34, 28 (1995).

    Article  CAS  Google Scholar 

  16. L. S. Clesceri, A. E. Greenberg and A. D. Eaton, Standard methods for the examination of water and wastewater, 20th Ed., 4-108, American Public Health Association, Washington, DC (1998).

    Google Scholar 

  17. S. M. Ponder, J. R. Ford, J.G. Darab and T. E. Mallouk, Mater. Res. Soc. Sym. Proc., 556, 1269 (1999).

    Article  CAS  Google Scholar 

  18. L. J. Matheson and P.G. Tratnyek, Environ. Sci. Technol., 28, 2045 (1994).

    Article  CAS  Google Scholar 

  19. R.M. Cornell and U. Schwertmann, The iron oxides, VCH, Weinheim (1996).

    Google Scholar 

  20. R.G. Ford, P.M. Bertsch and J. C. Seaman, Clays Clay Miner., 45, 769 (1997).

    Article  CAS  Google Scholar 

  21. J. P. Gaviría, A. Bohé, A. Pasquevich and D.M. Pasquevich, Physica B., 389, 198 (2007).

    Article  Google Scholar 

  22. E. E. Carpenter, S. Calvin, R. M. Stroud and V. G. Harris, Chem. Mater., 15, 3245 (2003).

    Article  CAS  Google Scholar 

  23. Y. Liu, S. A. Majetich, R. D. Tilton, D. S. Sholl and G.V. Lowry, Environ. Sci. Technol., 39, 1338 (2005).

    Article  CAS  Google Scholar 

  24. J. T. Nurmi, P.G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, J. C. Penn and M. D. Driessen, Environ. Sci. Technol., 39, 1221 (2005).

    Article  CAS  Google Scholar 

  25. K. Sohn, S.W. Kang, S. Ahn, M. Woo and S. K. Yang, Environ. Sci. Technol., 40, 5514 (2006).

    Article  CAS  Google Scholar 

  26. W. Yan, A. A. Herzing, C. J. Kiely and W. X. Zhang, J. Contam. Hydrol., 118, 96 (2010).

    Article  CAS  Google Scholar 

  27. L. Signorini, L. Pasquini, L. Savini, R. Carboni, F. Boscherini, E. Bonetti, A. Giglia, M. Pedio, N. Mahne and S. Nannarone, Phys. Rev. B., 68, 195423-1–195423-8 (2003).

    Article  Google Scholar 

  28. M. J. Alowitz and M.M. Scherer, Environ. Sci. Technol., 36, 299 (2002).

    Article  CAS  Google Scholar 

  29. C. P. Huang, H.W. Wang and P. C. Chiu, Water Res., 32, 2257 (1998).

    Article  CAS  Google Scholar 

  30. Y. H. H uang and T. C. Zhang, Water Res., 38, 2631 (2004).

    Article  Google Scholar 

  31. R. Miehr, M.M. Tratnyek, J. Z. Bandstra, M. M. Scherer, M. J. Alowitz and E. J. Bylaska, Environ. Sci. Technol., 38, 139 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samyoung Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, M., Ahn, S. The influence of activated carbon support on nitrate reduction by Fe(0) nanoparticles. Korean J. Chem. Eng. 29, 1057–1062 (2012). https://doi.org/10.1007/s11814-011-0292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0292-1

Key words

Navigation