Skip to main content
Log in

Approximate design and cost evaluation of internally heat-integrated distillation columns (HIDiCs)

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Commercial design programs do not provide a ready-to-use process simulation of tray-by-tray heat-integrated distillation columns, so the computation of the columns using the programs is difficult due to their convergence problem. An approximate procedure for the design of the internally heat-integrated distillation column (HIDiC) is proposed here, and its performance of the design and cost evaluation is demonstrated with two example processes. The approximate design procedure eliminates the artificial heat exchangers and in-tray streams required in the design with the commercial programs, and therefore no information of the exchangers and streams is necessary except the amount of the in-tray heat transfer rate. The economic evaluation indicates that a reduction of the total annual cost of 8.1% is possible with benzene-toluene process and that 59.3% is yielded with the propylene-propane process. The results also demonstrate that the HIDiC is especially efficient for the tight separation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. King, Separation processes, 2nd Ed., McGraw-Hill, New York (1980).

    Google Scholar 

  2. R. S. H. Mah and R. B. Wodnik, AIChE J., 23, 651 (1977).

    Article  CAS  Google Scholar 

  3. M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya and T. Takamatsu, Chem. Eng. Res. Des., 81, 162 (2003).

    Article  CAS  Google Scholar 

  4. K. Kataoka, H. Noda, H. Yamaji, T. Mukaida and M. Kaneda, Proceedings of the 8 th world congress of chemical engineering, Montreal, Canada (2009).

  5. Y. Kansha N. Tsuru, K. Sato, C. Fushimi and A. Tsutsumi, Ind. Eng. Chem. Res., 48, 7682 (2009).

    Article  Google Scholar 

  6. J. P. Schmal, H. J. van der Kooi, A. de Rijke, Z. Olujic and P. J. Jansens, Chem. Eng. Res. Des., 84, 374 (2006).

    Article  CAS  Google Scholar 

  7. K. Huang, W. Lui, J. Ma and S. Wang, Ind. Eng. Chem. Res., 49, 1333 (2010).

    Article  CAS  Google Scholar 

  8. Y. Wang, K. Huang and S. Wang, Ind. Eng. Chem. Res., 49, 3349 (2010).

    Article  CAS  Google Scholar 

  9. Y. H. Kim, Ind. Eng. Chem. Res., 50, 5733 (2011).

    Article  CAS  Google Scholar 

  10. Y. H. Kim, Chem. Eng. Res. Des., 89, 2495 (2011).

    Article  CAS  Google Scholar 

  11. E.A. Wolff and S. Skogestad, Ind. Eng. Chem. Res., 34, 2094 (1995).

    Article  CAS  Google Scholar 

  12. P. B. Shah, Chem. Eng. Prog., 98, 46 (2002).

    CAS  Google Scholar 

  13. M.Y. Lee, S.Y. Jeong and Y. H. Kim, Korean J. Chem. Eng., 25, 1245 (2008).

    Article  CAS  Google Scholar 

  14. M.Y. Lee, D.W. Choi and Y. H. Kim, Korean J. Chem. Eng., 26, 631 (2009).

    Article  CAS  Google Scholar 

  15. K. S. Hwang, B. C. Kim and Y. H. Kim, Korean J. Chem. Eng., 27, 1056 (2010).

    Article  CAS  Google Scholar 

  16. S. H. Lee, M. Shamsuzzoha, M. Han, Y.H. Kim and M. Lee, Korean J. Chem. Eng., 28, 348 (2011).

    Article  CAS  Google Scholar 

  17. R. Rivero, M. Garcia and J. Urquiza, Energy, 29, 467 (2004).

    Article  CAS  Google Scholar 

  18. M. Schaller, K. H. Hoffmann, G. Siragusa, P. Salamon and B. Andresen, Comput. Chem. Eng., 25, 1537 (2001).

    Article  CAS  Google Scholar 

  19. G. de Koeijer and R. Rivero, Chem. Eng. Sci., 58, 1587 (2003).

    Article  Google Scholar 

  20. Z. Olujic, L. Sun, A. de Rijke and P. J. Jansens, Energy, 31, 3083 (2006).

    Article  CAS  Google Scholar 

  21. Z. Olujic, L. Sun, M. Gadalla, A. de Rijke and P. J. Jansens, Chem. Biochem. Eng., 22, 383 (2008).

    CAS  Google Scholar 

  22. B. Suphanit, Energy, 35, 1505 (2010).

    Article  CAS  Google Scholar 

  23. M. Gadalla, L. Jimenez, Z. Olujic and P. J. Jansens, Comput. Chem. Eng., 31, 1346 (2007).

    Article  CAS  Google Scholar 

  24. J.M. Douglas, Conceptual design of chemical processes, McGraw- Hill, New York (1988).

    Google Scholar 

  25. Y.H. Kim and W. L. Luyben, Chem. Eng. Comm., 128, 65 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Han Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H. Approximate design and cost evaluation of internally heat-integrated distillation columns (HIDiCs). Korean J. Chem. Eng. 29, 1004–1009 (2012). https://doi.org/10.1007/s11814-011-0288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0288-x

Key words

Navigation