Skip to main content

The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304

Abstract

The effect of the composition of artificial sea water (ASW) medium on the growth properties and docosahexaenoic acid (DHA) production from Thraustochytrium aureum ATCC 34304 was investigated. A maximum dry cell weight (DCW) of 3.71 g/l was obtained when the NaCl and MgSO4 concentration in the ASW media were 15 and 0 g/l, respectively. The maximum initial specific growth (ISG) rate of 0.16 was attained at 7.5 g/l NaCl and 18 g/l MgSO4, while the minimum ISG rate (0.02) was obtained at 5.0 g/l NaCl and 4.5 g/l MgSO4. The least doubling time required for biomass production was 4.3 h at 7.5 g/l NaCl and different MgSO4 concentrations. A maximum of 7.9 g/l DCW was obtained on the fourth day of cultivation at 30 g/l glucose and 2.5 g/l (each) yeast extract (YE) and peptone. The DHA content in the lipids was significantly affected by the concentration of glucose and nitrogen sources (YE and peptone) in the ASW medium. At the lowest glucose (10 g/l) and YE/peptone (0.5 g/l) concentration and highest glucose (30 g/l) and YE/peptone (2.5 g/l) concentration, the DHA content was 34.725 and 40.33%, respectively, relative to total lipid content. However, the DHA content in the lipid was not affected by the NaCl and MgSO4 concentration. At the lowest NaCl (2.5 g/l) and MgSO4 (4.5 g/l) concentration and highest NaCl (60 g/l) and MgSO4 (18 g/l) concentration the DHA content was 39.62 and 38.48%, respectively. The maximum DHA content in the lipid was 49.01% after four days of cultivation when 7.5 g/l NaCl and 4.5 g/l MgSO4 were in the ASW medium. The growth properties of T. aureum ATCC 34304 for biomass production and DHA yield in the lipid content were found to be affected by NaCl and glucose concentration.

This is a preview of subscription content, access via your institution.

References

  1. J. P. Bergé and G. Barnathan. Adv. Biochem. Eng. Biotechnol., 96, 49 (2005).

    Google Scholar 

  2. I. Gill and R. Valivety, Trends Biotechnol., 15, 401 (1997).

    Article  CAS  Google Scholar 

  3. Z. Perveen, H. Ando, A. Ueno, Y. Ito, Y. Yamamoto, Y. Yamada, T. Takagi, T. Kabeko, K. Kogame and H. Okuyama, Biotechnol. Lett., 28, 197 (2006).

    Article  CAS  Google Scholar 

  4. D. H. Kang, P. Anbu, Y. S. Jeong, B. P. Chaulagain, J.W. Seo and B. K. Hur, Biotechnol. Bioprocess Eng., 15, 261 (2010).

    Article  CAS  Google Scholar 

  5. A. P. Simopoulos, Experiment. Biol. Med., 233, 674 (2008).

    Article  CAS  Google Scholar 

  6. A. M. Burja, H. Radianingtyas, A. Windust and C. J. Barrow, Appl. Microbiol. Biotechnol., 72, 1161 (2006).

    Article  CAS  Google Scholar 

  7. R. Yamamura and Y. Shimomura, J. Am.Oil Chem. Soc., 74, 1435 (1997).

    Article  CAS  Google Scholar 

  8. D. H. Kang, E. J. Jeh, J.W. Seo, B. H. Chun and B. K. Hur, Korean J. Chem. Eng., 24, 651 (2007).

    Article  CAS  Google Scholar 

  9. K.W. Fan, Y. Jiang, L. T. Ho and F. Chen, J. Agric. Food Chem., 57, 6334 (2009).

    Article  CAS  Google Scholar 

  10. O. P. Ward and A. Singh, Process Biochem., 40, 3627 (2005).

    Article  CAS  Google Scholar 

  11. S. Raghukumar, Marine Biotechnol., 10, 631 (2008).

    Article  CAS  Google Scholar 

  12. J. L. Harwood and I. A. Guschina, Biochimie, 91, 679 (2009).

    Article  CAS  Google Scholar 

  13. P. Anbu, D. U. Kim, E. J. Jeh, Y. S. Jeong and B. K. Hur, Biotechnol. Bioprocess Eng., 12, 720 (2007).

    Article  CAS  Google Scholar 

  14. B.K. Bajpai, P. Bajpai and O. P. Ward, J. Am. Oil Chem. Soc., 68, 509 (1991).

    Article  CAS  Google Scholar 

  15. B. K. Hur, D.W. Cho, H. J. Kim, C. I. Park and H. J. Suh, Biotechnol. Bioprocess Eng., 7, 10 (2002).

    Article  CAS  Google Scholar 

  16. G. Lepage and C. C. Roy, J. Lipid Res., 25, 1391 (1984).

    CAS  Google Scholar 

  17. T. Yokochi, D. Honda, T. Higashihara and T. Nakahara, Appl. Microbiol. Biotechnol., 49, 72 (1998).

    Article  CAS  Google Scholar 

  18. S. Raghukumar, Eur. J. Protistol., 38, 127 (2002).

    Article  Google Scholar 

  19. A. Dotsch, J. Severin, W. Alt, E. A. Galinski and J.U. Kreft, Microbiology, 154, 2956 (2008).

    Article  Google Scholar 

  20. I. Iida, T. Nakahara, T. Yokochi, Y. Kamisaka, H. Yagi, M. Yamaoka and O. Suzuki, J. Ferment. Bioeng., 81, 76 (1996).

    Article  CAS  Google Scholar 

  21. N. Nagano, Y. Taoka, D. Honda and M. Hayashi, J. Oleo Sci., 58, 623 (2009).

    Article  CAS  Google Scholar 

  22. Y. Kumon, R. Yokoyama, Z. Haque, T. Yokochi, D. Honda and T. Nakahara, Mar. Biotechnol., 8, 170 (2006).

    Article  CAS  Google Scholar 

  23. A. N. Jacobsen, Doctoral Thesis, Norwegian University of Science and Technology (2008).

  24. F.Y. Feng, W. Yang, G. Z. Jiang, Y. N. Xu and T.Y. Kuang, Process Biochem., 40, 1315 (2005).

    Article  CAS  Google Scholar 

  25. A. Singh, S. Wilson and O. P. Ward, World J. Microbiol. Biotechnol., 12, 76 (1996).

    Article  CAS  Google Scholar 

  26. T. Yaguchi, S. Tanaka, T. Yokochi, T. Nakahara and T. Higashihara, J. Am. Oil Chem. Soc., 74, 1431 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Ki Hur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Min, K.H., Lee, H.H., Anbu, P. et al. The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304. Korean J. Chem. Eng. 29, 1211–1215 (2012). https://doi.org/10.1007/s11814-011-0287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0287-y

Key words

  • Thraustochytrium aureum
  • Polyunsaturated Fatty Acids (PUFAs)
  • Salt Concentration
  • Docosahexaenoic Acid (DHA)
  • Dry Cell Weight