Skip to main content
Log in

Analytical investigation of temperature distribution and flame speed across the combustion zones propagating through an iron dust cloud utilizing a three-dimensional mathematical modeling

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the analytical model of iron dust cloud combustion presented in this article, by solving the 3D energy equations, the gas temperature distribution in the channel and a new equation for flame speed are obtained. This equation can determine the relationship between flame speed and particle radius and dust concentration. The equations are written in two limiting cases: lean and rich mixtures. Flame structure consists of preheat, reaction, and post-flame zones for the lean mixture and preheat and reaction zones for the rich mixture. Equations in both mixture conditions are solved using the finite Fourier transform method. By solving the energy equations in each zone and matching the temperature and heat flux at the interfacial boundaries, algebraic equations of flame speed are obtained. The obtained gas temperature distribution in different flame zones in the channel and also flame speed changes in terms of particles’ radius, equivalence ratio, and channel width in both lean and rich mixtures are presented in the results section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bidabadi, J. Fereidooni, R. Tavakoli and M. Mafi, Korean J. Chem. Eng., 28(2), 461 (2011).

    Article  CAS  Google Scholar 

  2. M. Bidabadi, Gh. Barari, M. Azimi and M. Mafi, Int. J. Recent Trend. Eng., 1(5), 26 (2009).

    Google Scholar 

  3. W. E. Baker and M. J. Tang, Gas, dust and hybrid explosions, Elsevier, New York (1991).

    Google Scholar 

  4. K. L. Cashdollar, J. Loss Prevent. Proc., 9(1), 65 (1996).

    Article  Google Scholar 

  5. A. E. Dahoe, J. F. Zevenbergen, S. M. Lemkowitz and B. Scartetl, J. Loss Prevent. Proc., 9(1), 33 (1996).

    Article  Google Scholar 

  6. M. Hertzberg, I. A. Zlochower and K. L. Cashdollar, 24 th Symposium (international) on Combustion, Pittsburgh, PA: The Combustion Institute, 1827 (1992).

    Google Scholar 

  7. F. Tamanini and J. V. Valiulis, J. Loss Prevent. Proc., 9(1), 105 (1996).

    Article  Google Scholar 

  8. K. L. Cashdollar, M. Hertzberg and I.A. Zlochower, 22 th Symposium (international) on Combustion, Pittsburgh, PA: The Combustion Institute, 1757 (1988).

    Google Scholar 

  9. E.L. Dreizin and V. K. Hoffmann, Combust. Flame, 118, 262 (1999).

    Article  CAS  Google Scholar 

  10. O. S. Han, M. Yashima, T. Matsuda, H. Matsui, A. Miyake and A. Ogawa, J. Loss Prevent. Proc., 14(3), 153 (2001).

    Article  Google Scholar 

  11. T. Matsuda, M. Yashima, M. Nifuku and H. Enomoto, J. Loss Prevent. Proc., 14(6), 449 (2001).

    Article  Google Scholar 

  12. J. L. Chen, R. Dobashi and T. Hirano, J. Loss Prevent. Proc., 9(3), 225 (1996).

    Article  Google Scholar 

  13. M. Bidabadi and A. Rahbari, Combust. Explo. Shock+, 45(3), 278 (2009).

    Article  Google Scholar 

  14. J. H. Sun, R. Dobashi and T. Hirano, 27 th Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 2405 (1998).

    Google Scholar 

  15. J. H. Sun, R. Dobashi and T. Hirano, Combust. Sci. Technol., 150, 99 (2000).

    Article  CAS  Google Scholar 

  16. J. H. Sun, R. Dobashi and T. Hirano, J. Loss Prevent. Proc., 14, 463 (2001).

    Article  Google Scholar 

  17. J. H. Sun, R. Dobashi and T. Hirano, Combust. Flame, 134, 381 (2003).

    Article  CAS  Google Scholar 

  18. J. H. Sun, R. Dobashi and T. Hirano, J. Loss Prevent. Proc., 19, 135 (2006).

    Article  Google Scholar 

  19. D. B. Beach, A. J. Rondinone, B.G. Sumpter, S. D. Labinov and R. K. Richards, J. Energy Res.-ASME, 129, 29 (2007).

    Article  CAS  Google Scholar 

  20. D. R. Ballal, Proc R. Soc. Lond. A, 385, 21 (1983).

    Article  CAS  Google Scholar 

  21. E. L. Dreizin, Combust. Flame, 105(4), 541 (1996).

    Article  CAS  Google Scholar 

  22. S. Goroshin, M. Bidabadi and J. H. S. Lee, Combust. Flame, 105, 147 (1996).

    Article  CAS  Google Scholar 

  23. H. C. Wu, R. C. Chang and H. C. Hsiao, J. Loss Prevent. Proc., 22, 21 (2009).

    Article  CAS  Google Scholar 

  24. F. D. Tang, S. Goroshin, A. Higgins and J. Lee, Proc. Combust. Inst., 32(2), 1905 (2009).

    Article  CAS  Google Scholar 

  25. T. Hirano, Y. Sato and K. Sato, J. Saw. Oxid. Commun., 6, 113 (1984).

    CAS  Google Scholar 

  26. F. P. Incropera, D. P. De Witt, T. L. Bergman and A. S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons Inc., New York (2007).

    Google Scholar 

  27. S. Goroshin, M. Kolbe and J. H. S. Lee, Proc. Combust. Inst., 28, 2811 (2000).

    Article  CAS  Google Scholar 

  28. D. Myint-U and L. Debnath, Linear partial differential equations for scientists and engineers, Birkhäuser, Berlin (2007).

    Google Scholar 

  29. Y. Huang, G. A. Risha, V. Yang and R. A. Yetter, Combust. Flame, 156(1), 5 (2009).

    Article  CAS  Google Scholar 

  30. Y. Huang, G.A. Risha, V. Yang and R.A. Yetter, In Proceedings of the 43 rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10 (2005).

    Google Scholar 

  31. S. Goroshin, I. Fomenko and J. H. S. Lee, Proc. Combust. Inst., 26, 1961 (1996).

    Google Scholar 

  32. M. Jadidi, M. Bidabadi and M. E. Hosseini, P. I. Mech. Eng. G-J Aer., 223, 915 (2009).

    Google Scholar 

  33. M. Bidabadi, A. Haghiri and A. Rahbari, J. Hazard. Mater., 176(1–3), 146 (2010).

    Article  CAS  Google Scholar 

  34. S.R. Turns, An introduction to combustion, McGraw-Hill, Boston (2000).

    Google Scholar 

  35. D.W. Green and R. H. Perry, Perry’s chemical engineers’ handbook, McGraw-Hill, New York (2008).

    Google Scholar 

  36. T. A. Steinberg, D. B. Wilson and J. M. Stoltzfus, in Flammability and sensitivity of materials in oxygen-enriched atmosphere, T. R. William, C. C. Ting and T. A. Steinberg Eds., ASTM Publication, Ann Arbor (1997).

    Google Scholar 

  37. M. Bidabadi, PhD Thesis, MC Gill University, Canada (1995).

  38. V. S. Arpaci, Conduction heat transfer, Addison-Wesley, Reading, MA (1966).

    Google Scholar 

  39. C. R. Wylie and L. C. Barrett, Advanced engineering mathematics, McGraw-Hill, New York (1995).

    Google Scholar 

  40. Y. B. Zeldovich, G. I. Barenblatt, V. D. Librovich and G.M. Makhviladze, The mathematical theory of combustion and explosions, Consultants Bureau, New York (1985).

    Book  Google Scholar 

  41. G. H. Markstain, AIAA J., 1(3), 550 (1963).

    Article  Google Scholar 

  42. A. S. Gordon, C.M. Drew, J. L. Prentice and R. H. Knipe, AIAA J., 6(4), 577 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Mafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidabadi, M., Mafi, M. Analytical investigation of temperature distribution and flame speed across the combustion zones propagating through an iron dust cloud utilizing a three-dimensional mathematical modeling. Korean J. Chem. Eng. 29, 1025–1037 (2012). https://doi.org/10.1007/s11814-011-0275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0275-2

Key words

Navigation