Skip to main content
Log in

Biodegradable polycaprolactone/cuttlebone scaffold composite using salt leaching process

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We prepared biodegradable polycaprolactone/cuttlebone scaffold composite by salt leaching process. In the first step, a co-continuous blend of biodegradable materials, polycaprolactone (PCL) and cuttlebone (CB), and an amount of sodium chloride salt particles were mixed using a stirrer. Next, the extraction of mineral salts using de-ionized distilled water was performed using a biodegradable PCL/CB scaffold with fully interconnected pores. Finally, the durable morphology of the scaffolds was fabricated by freeze-drying process at −53 °C for 24 hrs in a vacuum. In addition, the quadrilateral pres ranged from about 250 to 300 μm in diameter. Scanning electron microscopy (SEM) and mercury intrusion porosimeter techniques were carried out to characterize the pore morphology. By increasing the CB and sodium chloride salt particle content, the number of interconnected pores, material properties, and pore morphology were dramatically changed. The average compressive strengths (load at 50% strain) of the different porous PCL/CB scaffolds were found to decrease from 133 to about 79 (load at 50% strain, gf) with an increase in porosity. The values of the porosity increased as the sodium chloride salt volume fraction increased

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Savarino, N. Baldini, M. Greco, O. Capitani, S. Pinna, S. Valentini, B. Lombardo, M.T. Esposito, L. Pastore, L. Ambrosio, S. Battista, F. Causa, S. Zeppetelli, V. Guarino and P.A. Netti, Biomaterials, 28, 3101 (2007).

    Article  CAS  Google Scholar 

  2. E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton and J. Mey, Biomaterials, 28, 3012 (2007).

    Article  CAS  Google Scholar 

  3. M.C. Serrano, R. Pagani, M. Vallet, J. Pena, A. Ramila, I. Izquierdo and M. T. Portoles, Biomaterials, 25, 5603 (2004).

    Article  CAS  Google Scholar 

  4. L. Calandrelli, B. Immirzi, M. Malinconico, M.G. Volpe, A. Oliva and A. Della, Polymer, 41, 8027 (2000).

    Article  CAS  Google Scholar 

  5. J. S. Lee, D.H. Go, J.W. Bae, I. K. Jung, J.W. Lee and D. K. Park, Curr. Appl. Phys., 7S1, e49 (2007).

    Article  Google Scholar 

  6. C. J. Goodwin, M. Braden, S. Downes and N. J. Marshall, J. Biomed. Mater. Res., 40, 204 (1998).

    Article  CAS  Google Scholar 

  7. H.W. Kim, J. C. Knowles and H. E. Kim, J. Biomed. Mater. Res., 70A, 467 (2004).

    Article  CAS  Google Scholar 

  8. C. Choi, S. Y. Chae and J.W. Nah, Polymer, 47, 4571 (2006).

    Article  CAS  Google Scholar 

  9. B. Rai, S.H. Teoh, D.W. Hutmacher, T. Cao and K. H. Ho, Biomaterials, 26, 3739 (2005).

    Article  CAS  Google Scholar 

  10. C. Rigo and A. Bairati, Tissue & Cell, 30, 112 (1998).

    Article  CAS  Google Scholar 

  11. A. Bairati, M. Comazzi, M. Gioria and C. Rigo, Tissue & Cell, 30, 340 (1998).

    Article  CAS  Google Scholar 

  12. P. Sarin, S. J. Lee, Z.D. Apostolov and W. M. Kriven, J. Am. Ceram. Soc., 94, 2362 (2011).

    Article  CAS  Google Scholar 

  13. S. J. Lee, Y. C. Lee and Y. S. Yonn, J. Ceram. Process Res., 47, 244 (2010).

    Google Scholar 

  14. L. Pang, Y. Hu, Y. Yan, L. Liu, Z. Xiong, Y. Wei and J. Bai, J. Surf. Coat., 201, 9549 (2007).

    Article  CAS  Google Scholar 

  15. H. S. Mansur and H. S. Costa, Chem. Eng. J., 137, 72 (2008).

    Article  CAS  Google Scholar 

  16. H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma and L. Cheng, Biomaterials, 28, 3338 (2007).

    Article  CAS  Google Scholar 

  17. Y. Zheng, Y. Wang, H. Yang, X. Chen and Z. Chen, J. Biomed. Mater. Res., 80B, 236 (2007).

    Article  CAS  Google Scholar 

  18. S. H. Oh, I. K. Park, J.M. Kim and J.H. Lee, Biomaterials, 28, 1664 (2007).

    Article  CAS  Google Scholar 

  19. H.W. Kim, J. C. Knowles and H. E. Kim, Biomaterials, 25, 1279 (2004).

    Article  CAS  Google Scholar 

  20. B. T. Lee, C.W. Lee, M. H. Youn and H.Y. Song, Mater. Sci. Eng. A, 425, 11 (2007).

    Google Scholar 

  21. J. S. Park, D.G. Woo, B.K. Sun, H.M. Chung, S. J. Im, Y.M. Choi, K. Park, K.M. Huh and K. H. Park, J. Control Release, 124, 51 (2007).

    Article  CAS  Google Scholar 

  22. M. Mattioli, G. Vozzi, K. Kyriakidou, E. Pulieri, G. Lucarini, B. Vinci, A. Pugnaloni, G. Biagini and A. Ahluwalia, J. Biomed. Mater. Res., 85A, 466 (2008).

    Article  Google Scholar 

  23. Q. Hou, D.W. Grijpma and J. Feigen, Macromol. Rapid Commun., 23, 247 (2002).

    Article  CAS  Google Scholar 

  24. L. F. Zhang, R. Sun, L. Xu, J. Du, Z. C. Xiong, H. C. Chen, C. D. Xiong, Mater. Sci. Eng. C, 28, 141 (2008).

    Article  Google Scholar 

  25. J. Reignier and M. A. Huneault, Polymer, 47, 4703 (2006).

    Article  CAS  Google Scholar 

  26. S. B. Lee, Y.H. Kim, M. S. Chong, S. H. Hong and Y.M. Lee, Biomaterials, 26, 1961 (2005).

    Article  CAS  Google Scholar 

  27. S. Teixeira, M. P. Ferraz and F. J. Monteiro, J. Mater. Sci: Mater. Med., 19, 855 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seok Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JS., Lim, YM., Youn, MH. et al. Biodegradable polycaprolactone/cuttlebone scaffold composite using salt leaching process. Korean J. Chem. Eng. 29, 931–934 (2012). https://doi.org/10.1007/s11814-011-0271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0271-6

Key words

Navigation