Skip to main content
Log in

Fabrication of electrolyte-impregnated cathode by dry casting method for molten carbonate fuel cells

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A dry casting method for fabricating a porous Ni plate, which was used as the cathode for molten carbonate fuel cells, was proposed, and the basic characteristics of the as-prepared cathode were examined and compared with those of a conventional cathode fabricated by using the tape casting method. Through several investigations, we confirmed that the cathode fabricated by using the dry casting method has properties identical to those of the conventional cathode. Electrolyte-impregnated cathodes were also successfully fabricated by using the dry casting method. Several characteristics of the as-prepared electrolyte-impregnated cathodes including their electrical performance were investigated by using tests such as the single cell test. The cell performances of a single cell using a 25-wt% electrolyte-impregnated cathode and not the electrolyte-impregnated cathode were 0.867 V and 0.819 V at a current density of 150 mAcm−2 and 650 °C, respectively. The single cell using a 25-wt% electrolyte-impregnated cathode was also operated stably for 2,000 h. The cell performance was enhanced, and the internal resistance and the charge transfer resistance were reduced after electrolyte impregnation in the cathode. Moreover, the increase in the surface area of the cathode and the further lithiation of the NiO cathode after the electrolyte impregnation in the cathode enhance the area of the three-phase boundary and the electrical conductivity, respectively. However, the cell performance of the single cell using the 35-wt% electrolyte-impregnated cathode was reduced, and the cell could not be operated for a long time because of the rapid increase in the N2 crossover caused by the poor formation of a wet seal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Song, J. Han, S. P. Yoon, S.W. Nam, I.-H. Oh and D. K. Choi, J. Electrochem. Sci. Technol., 1, 102 (2010).

    Article  CAS  Google Scholar 

  2. J.-H. Lim, G.B. Yi, K.H. Suh, J.-K. Lee, Y. S. Kim and H.-S. Chun, Korean J. Chem. Eng., 16, 856 (1999).

    Article  CAS  Google Scholar 

  3. Y.-S. Kim, H.-S. Choo, M.-C. Shin, M.-Z. Hong, J.-H. Lim and H.-S. Chun, Korean J. Chem. Eng., 17, 497 (1999).

    Article  CAS  Google Scholar 

  4. A. Dicks, Curr. Opin. Solid State Mater. Sci., 8, 379 (2004).

    Article  CAS  Google Scholar 

  5. Z. P. Liu, P. Y. Guo and C. L. Zeng, J. Power Sources, 166, 348 (2007).

    Article  CAS  Google Scholar 

  6. E. Park, M. Hong, H. Lee, M. Kim and K. Kim, J. Power Sources, 143, 84 (2005).

    Article  CAS  Google Scholar 

  7. S.Y. Lee, H.-C. Lim and G.-Y. Chung, Korean J. Chem. Eng., 27, 487 (2010).

    Article  CAS  Google Scholar 

  8. S. Randstrom, C. Lagergren and S. Scaccia, Fuel Cells, 7, 218 (2007).

    Article  CAS  Google Scholar 

  9. B. H. Ryu, I.G. Jang, K. H. Moon, J. Han and T.-H. Lim, J. Fuel Cell Sci. Technol., 3, 389 (2006).

    Article  CAS  Google Scholar 

  10. H.-H. Park, C.-I. Jang, H.-S. Shin and K.-T. Lee, Korean J. Chem. Eng., 13, 35 (1996).

    Article  CAS  Google Scholar 

  11. X.-J. Luo, B.-L. Zhang, W.-L. Li and H.-R. Zhung, Ceram. Int., 30, 2099 (2004).

    Article  CAS  Google Scholar 

  12. F. Li, C. Wang and K. Hu, Mater. Res. Bull., 37, 1907 (2002).

    Article  CAS  Google Scholar 

  13. D. Hotza and P. Greil, Mater. Sci. Eng., A202, 206 (1995).

    CAS  Google Scholar 

  14. C. Fu, S. H. Chan, Q. Liu, X. Ge and G. Pasciak, Int. J. Hydrog. Energy, 35, 301 (2010).

    Article  CAS  Google Scholar 

  15. Z. Lv, T. Zhang, D. Jiang, J. Zhang and Q. Lin, Ceram. Int., 35, 1889 (2009).

    Article  CAS  Google Scholar 

  16. Y.-P. Zeng, A. Zimmermann, L. Zhou and F. Aldinger, J. Eur. Ceram. Soc., 24, 253 (2004).

    Article  CAS  Google Scholar 

  17. B. H. Ryu, Y. S. Kim, C.-S. Jun and M.Y. Shin, US Patent, 160, 181 (2008).

  18. G. Xu and C. Yuh, US Patent, 257,721 (2006).

  19. B. H. Ryu, Y. S. Kim, C.-S. Jun and M.Y. Shin, US Patent, 157,419 (2008).

  20. A. Wijayasinghe, B. Bergman and C. Lagergren, Solid State Ionics, 177, 175 (2006).

    Article  CAS  Google Scholar 

  21. S. Mitsushima, K. Matsuzawa, N. Kamiya and K. Ota, Electrochim. Acta, 47, 3823 (2002).

    Article  CAS  Google Scholar 

  22. S. A. Song, M.G. Kang, J. Han, S. P. Yoon, S.W. Nam, I.-H. Oh and D. K. Choi, J. Electrochem. Soc., 158, B660 (2011).

    Article  CAS  Google Scholar 

  23. P. A. Lessing, G. R. Miller and H. Yamada, J. Electrochem. Soc., 133, 1537 (1986).

    Article  CAS  Google Scholar 

  24. S. van Houten, J. Phys. Chem. Solids, 17, 7 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonghee Han or Sung-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, M.G., Song, S.A., Jang, SC. et al. Fabrication of electrolyte-impregnated cathode by dry casting method for molten carbonate fuel cells. Korean J. Chem. Eng. 29, 876–885 (2012). https://doi.org/10.1007/s11814-011-0263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0263-6

Key words

Navigation