Skip to main content
Log in

Properties of edible biofilm manufactured from yellowfin tuna (Thunnus albacares) skin gelatin

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the functional properties of gelatin biofilms obtained from yellowfin tuna skin and developed an edible bioflim from fish byproducts to replace mammalian sources. For the biofilms, tensile strength and elongation were 48.57MPa and 15.2%, respectively. The color difference and yellow index values of the biofilms were higher than those of porcine films. The opacity of the biofilms was higher than that of porcine films. In water, the biofilms were stable at pH 4–7. Water vapor and oxygen permeability of the biofilms were 5.3 cm3/m2·day and 110 g/m2·day, respectively. The glass transition temperature and of the thermal stability of the biofilms was 56.30 °C and ∼260 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Cao, Y. Fu and J. He, Food Hysrocolloids, 21, 1153 (2007).

    Article  CAS  Google Scholar 

  2. S.-J. Kim and Z. Ustunol, J. Agriculture and Food Chemistry, 49(9), 4388 (2001).

    Article  CAS  Google Scholar 

  3. S. Y. Ou, K. C. Kwok and Y. J. Kang, J. Food Eng., 64(3), 301 (2004).

    Article  Google Scholar 

  4. A. Jongjareonraka, S. Benjakula, W. Visessanguanb, T. Prodpranc and M. Tanakad, Food Hydrocolloids, 20, 492 (2006).

    Article  Google Scholar 

  5. P.M. Gilsenan and S. B. Ross-Murphy, Food Hydrocolloids, 14, 191 (2000).

    Article  CAS  Google Scholar 

  6. D. Achet and X.W. He, Polymer, 36(4), 787 (1995).

    Article  CAS  Google Scholar 

  7. A. Bigi, B. Bracci, G. Cojazzi, S. Panzavolta and N. Roveri, Biomaterials, 19, 2335 (1998).

    Article  CAS  Google Scholar 

  8. P. J. A. Sobral, F. C. Menegalli, M. D. Hubinger and M.A. Roques, Food Hydrocoll, 15, 423 (2001).

    Article  CAS  Google Scholar 

  9. S. M. Cho, K. S. Kwak, D. C. Park, Y. S. Gu, C. I. Ji, D. H. Jang, Y. B. Lee and S. B. Kim, Food Hydrocolloids, 18(4), 573 (2004).

    Article  CAS  Google Scholar 

  10. I. J. Haug, K. I. Draget and O. Smidsrød, Food Hydrocolloids, 18, 203 (2004).

    Article  CAS  Google Scholar 

  11. R.A. Carvalho and C. R. F. Grosso, Food Hydrocolloids, 18, 717 (2004).

    Article  Google Scholar 

  12. F. M. Vanina, P. J. A. Sobrala, F. C. Menegallib, R. A. Carvalhoa and A.M. Q. B. Habitante, Food Hydrocolloids, 19, 899 (2005).

    Article  Google Scholar 

  13. M.C. Gómez-Guillén, J. Turnay, M. D. Fernández-Díaz, N. Ulmo, M.A. Lizaebe and P. Montero, Food Hydrocolloids, 16, 25 (2002).

    Article  Google Scholar 

  14. J. H. Yoon, J.W. Woo, H. J. Rho, J.R. Ahn, S. J. Yu, Y.B. Lee, C.K. Moon and S. B. Kim, Korean J. Chem. Eng., 25(1), 134 (2008).

    Article  CAS  Google Scholar 

  15. M. Gudmundsson, J. Food Sci., 67, 2172 (2006).

    Article  Google Scholar 

  16. S. K. Kim, H.G. Byun and E. H. Lee, J. Korean Ind. Eng. Chem., 5, 547 (1994).

    CAS  Google Scholar 

  17. K. Osborne, M. N. Voight and D. E. Hall, Utilization of lumpfish carcasses for production of gelatin. Lancaster, PA, Technomic Publishing Co., 143 (1990).

  18. B. Jamilah and K. G. Harvinder, Food Chemistry, 77, 81 (2002).

    Article  CAS  Google Scholar 

  19. J. S. Kim, C.W. Ihm and P. H. Kim, Agricultural Chemistry and Biotechnology, 39, 274 (1996).

    CAS  Google Scholar 

  20. J. A. Arnesen and A. Gildberg, Bioresour. Technol., 82, 191 (2002).

    Article  CAS  Google Scholar 

  21. J. H. Muyonga, C. G. B. Cole and K. G. Duodu, Food Chemistry, 87, 325 (2004).

    Article  Google Scholar 

  22. B. Giménez, J. Turnay, M. A. Lizarbe, P. Montero and M. C. Gómez-Guillén, Food Hydrocolloids, 19, 941 (2005).

    Article  Google Scholar 

  23. S. M. Cho, Y. S. Gu and S. B. Kim, Food Hydrocolloids, 19, 221 (2005).

    Article  CAS  Google Scholar 

  24. J. H. Han and J.D. Floros, J. Plastic Film and Sheet, 13, 287 (1997).

    CAS  Google Scholar 

  25. B. H. Kim, J.W. Park and J. H. Hong, Korean J. Food Sci. Technol., 37, 30 (2005).

    CAS  Google Scholar 

  26. ASTM, Standard test methods for determination of oxygen gas transmission rate, permeability and permeance at controlled relative humidity through barrier materials using a coulometric detector (F 1927–98). In: Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, USA (2004).

    Google Scholar 

  27. S. B. Ross-Murphy, Polymer, 33, 2622 (1992).

    Article  CAS  Google Scholar 

  28. I.G. Donhowe and O. Fennema, Edible films and coatings: Characteristics, formation, definition, and testing methods, pp. 1–24. In: Edible Coatings and Films to Improve Food Quality, Krochta, J.M., Baldwin, E. A., Nispero-Carriedo, M. (Eds.). Technomic Publishing Company, Lancaster, PA, USA (1994).

    Google Scholar 

  29. T. H. Mchugh, J.M. Krochta, E. A. Baldwin and M. O. Nisperos-Carriedo, Permeability properties of edible films, In edible coatings and films to improve food quality, Technomic Publishing Company, Lancaster, PA, USA, 174 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Jung, CK., Kim, DH. et al. Properties of edible biofilm manufactured from yellowfin tuna (Thunnus albacares) skin gelatin. Korean J. Chem. Eng. 29, 786–791 (2012). https://doi.org/10.1007/s11814-011-0246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0246-7

Key words

Navigation