Skip to main content
Log in

Structural and photoelectrochemical characterization of TiO2 nanowire/nanotube electrodes by electrochemical etching

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

TiO2 nanowire/nanotube electrodes were synthesized by anodization of titanium foils in ethylene glycol solution containing 0.5 wt% NH4F and 1 wt% water at 60 V for 6 h. The microstructure and morphology of the asprepared electrodes were investigated by XRD and SEM. A possible formation mechanism and oxidation parameters of nanocomposite structure were discussed. The relationship between structural characteristics of TiO2 nanowire/nanotube electrodes and its photoelectrochemical characterization were evaluated by electrochemical analyzer and photocatalytic degradation of methylene blue (MB) solution. Furthermore, these TiO2 nanowire/nanotube electrodes promoted the photoelectrochemical characterization due to the larger surface areas, enhanced light harvesting and electron transport rate. The results show that photocurrent density of 1.44mA/cm2 and photocatalytic degradation of 95.51% was achieved for TiO2 nanowire/nanotube electrodes, which were 0.55mA/cm2 and 20.52% higher than the TiO2 nanotube electrodes under a similar condition, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Raja, V. K. Mahajan and M. Misra, J. Power Sources., 159, 1258 (2006).

    Article  CAS  Google Scholar 

  2. G. K. Mor, K. Shankar and M. Paulose, Nano Lett., 5, 191 (2005).

    Article  CAS  Google Scholar 

  3. D.W. Bahnemann, S. N. Kholuiskaya and R. Dillert, Appl. Catal. B., 32, 161 (2002).

    Google Scholar 

  4. J. Kiss, L. óvári and A. Oszkóa, Surface Sci., 605, 1048 (2011).

    Article  Google Scholar 

  5. J. B. Baxter and E. S. Aydil, Sol. Energy Mater. Sol. Cells, 90, 607 (2006).

    Article  CAS  Google Scholar 

  6. J. J. Qiu, Z.G. Jin and Z. F. Liu, Thin Solid Films, 515, 2897 (2007).

    Article  CAS  Google Scholar 

  7. E. Hosono, S. Fujihara and I. Honma, Adv. Mater., 17, 2091 (2005).

    Article  CAS  Google Scholar 

  8. J.M. Macák, H. Tsuchiya and A. Ghicov, Electrochem. Commun., 7, 1133 (2005).

    Article  Google Scholar 

  9. O. K. Varghese, D.W. Gong and M. Paulose, Sens. Actuators, B, 93, 338 (2003).

    Article  Google Scholar 

  10. S. S. Malwadkar, R. S. Gholap and S. V. Awate, J. Photochem. Photobiol., A, 203, 24 (2009).

    Article  CAS  Google Scholar 

  11. M. Paulose, G. K. Mor and O.K. Varghese, J. Photochem. Photobiol., A., 178, 8 (2006).

    Article  CAS  Google Scholar 

  12. V. Idakieva, Z.Y. Yuan and T. Tabakova, Appl. Catal., A, 281, 149 (2005).

    Article  Google Scholar 

  13. L.V. Taveira, J. M. Macak and H. Tsuchiya, J. Electrochem. Soc., 152, B405 (2005).

    Article  CAS  Google Scholar 

  14. Y. H. Wang, H. X. Yang and H.M. Xu, Mater. Lett., 64, 164 (2010).

    Article  CAS  Google Scholar 

  15. X.Y. Pang, D. M. He and S. L. Luo, Sens. Actuators, B, 137, 134 (2009).

    Article  Google Scholar 

  16. C. Ruan, M. Paulose and O. K. Varghese, J. Phys. Chem. B, 109, 15754 (2005).

    Article  CAS  Google Scholar 

  17. M. Inoue and A. Murase, Surf. Interface Anal., 37, 1111 (2005).

    Article  CAS  Google Scholar 

  18. M. Paulose, K. Shankar and S. Yoriya, J. Phys. Chem. B, 110, 16179 (2006).

    Article  CAS  Google Scholar 

  19. C. A. Grimes, J. Phys. Chem., 15, 1451 (2007).

    Google Scholar 

  20. N. K. Allam and C. A. Grimes, Sol. Energy Mater. Sol. Cells, 92, 1468 (2008).

    Article  CAS  Google Scholar 

  21. J. H. Lim and J. Choi, Small, 3, 1504 (2007).

    Article  CAS  Google Scholar 

  22. P. P. Das, S. K. Mohapatra and M. Misra, J. Phys. D: Appl. Phys., 41, 245103 (2008).

    Article  Google Scholar 

  23. Z. L. Xiao, C. Y. Han and U. Welp, Nano Lett., 2, 1293 (2002).

    Article  CAS  Google Scholar 

  24. D. Kim, A. Ghicov and P. Schmuki, Electrochem. Commun., 10, 1835 (2008).

    Article  CAS  Google Scholar 

  25. L. D. Sun, S. Zhang and X.W. Sun, J. Electroanal. Chem., 637, 6 (2009).

    Article  CAS  Google Scholar 

  26. J. Wang and Z. Q. Lin, Chem. Mater., 20, 1257 (2008).

    Article  CAS  Google Scholar 

  27. K. S. Raja, T. Gandhi and M. Misra, Electrochem. Commun., 9, 1069 (2007).

    Article  CAS  Google Scholar 

  28. W. Chen, H. F. Zhang and I. M. Hsing, Electrochem. Commun., 11, 1057 (2009).

    Article  CAS  Google Scholar 

  29. Z. B. Wu, S. Guo and H. Q. Wang, Electrochem. Commun., 11, 1692 (2009).

    Article  CAS  Google Scholar 

  30. J. S. Jang, H.G. Kim and Upendra A. Joshi, Int. J. Hydrog. Energy, 33, 5975 (2008).

    Article  CAS  Google Scholar 

  31. W. T. Yao, S. H. Yu and S. J. Liu, J. Phys. Chem. B, 110, 11704 (2006).

    Article  CAS  Google Scholar 

  32. Z.B. Wu, F. Dong and W.R. Zhao, Nanotechnology, 20, 5701 (2009).

    Google Scholar 

  33. B. Lu, H. Li and L. Liao, Nanotechnology, 19, 5605 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ya, J., An, L., Liu, Z. et al. Structural and photoelectrochemical characterization of TiO2 nanowire/nanotube electrodes by electrochemical etching. Korean J. Chem. Eng. 29, 731–736 (2012). https://doi.org/10.1007/s11814-011-0241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0241-z

Key words

Navigation