Skip to main content

Experimental study and artificial neural network simulation of methane adsorption on activated carbon


The adsorption of methane on two activated carbons with different physical properties was measured. Adsorption isotherms were obtained by static volumetric method at different temperatures and pressures. The experimental results sow the best gas storage capacity was 113.5 V/V at temperature 280 K and pressure 8.5MPa on an activated carbon with surface area 1,060 m2/gr. An artificial neural network (ANN) based on genetic algorithm (GA) was used to predict amount of adsorption. The experimental data including input pressure, temperature and surface area of adsorbents as input parameters were used to create a GA-ANN simulation. The simulation results were compared with the experimental data and a good agreement was observed. The simulation was applied to calculate isosteric heat of adsorption by using the Clausius-Clapeyron equation. Comparison of the calculated adsorption heat showed different surface heterogeneity of the adsorbents.

This is a preview of subscription content, access via your institution.


  1. M. Tagliabuea, D. Farrussengb, S. Valenciac, S. Aguadob, U. Ravonb, C. Rizzoa, A. Cormac and C. Mirodatosa, J. Chem. Eng., 155, 553 (2009).

    Article  Google Scholar 

  2. D. Lozano-Castelló, J. Alcañiz-Monge, M. A. de la Casa-Lillo, D. Cazorla-Amorós and A. Linares-Solano, J. Fuel, 81, 1777 (2002).

    Article  Google Scholar 

  3. A. Danna, S. Iyuke, A. FakhrulRazi, T. Chuah, M. A. Atieh and M. F. Aikhatib, Environ. J. Info. Sci., 1, 597 (2003).

    Google Scholar 

  4. J. Wegrzyn and M. Gurevih, J. Appl. Energy, 55, 71 (1996).

    Article  CAS  Google Scholar 

  5. Y. Zhou, Y. Wang, H. Chen and L. Zhou, J. Carbon, 43, 2007 (2005).

    Article  CAS  Google Scholar 

  6. A. Linares-Solano Adsorbed natural gas storage for alternative motor fuels, Conference of the 6th framework program, Warsaw, Poland (2002).

  7. L. L. Vasiliev, L. E. Kanonchik, D. A. Mishkinis and M. I. Rabetsky, Int. J. Therm. Sci., 39, 1047 (2000).

    Article  CAS  Google Scholar 

  8. S. Cavenati, C. A. Grande and A. E. Rodrigues, J. Chem. Eng. Data, 49, 1095 (2004).

    Article  CAS  Google Scholar 

  9. H. Najibi, A. Chapoy and B. Tohidi, J. Fuel, 87, 7 (2007).

    Article  Google Scholar 

  10. Li Zhou and Yan Sun, AIChE J., 48, 2412 (2002).

    Article  CAS  Google Scholar 

  11. S.H. Himeno, T. Komatsu and S. H. Fujita, J. Chem. Eng. Data, 50, 369 (2005).

    Article  CAS  Google Scholar 

  12. R. Ch. Bansal and M. Goyal, Activated Carbon Adsorption, CRC Press (2005).

  13. M. Rasoolzadeh and Sh. Fatemi, Iran. J. Chem. Chem. Eng., 27,3, 127 (2008).

    CAS  Google Scholar 

  14. S. Aber, N. Daneshvar, S. M. Soroureddin, A. Chabok and K. Asadpour- Zeynali, Desalination, 211, 87 (2007).

    Article  CAS  Google Scholar 

  15. J. Bryjak, K. Ciesielski and I. Zbiciski, J. Biotechnol., 114, 177 (2004).

    Article  CAS  Google Scholar 

  16. K. Vasanth Kumar, M. Monteiro de Castro, M. Martinez-Escandell, M. Molina-Sabio and F. Rodriguez-Reinoso, Chem. Eng. J., 159, 272 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hassan Hashemipour.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molashahi, M., Hashemipour, H. Experimental study and artificial neural network simulation of methane adsorption on activated carbon. Korean J. Chem. Eng. 29, 601–605 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Methane
  • Activated Carbon
  • Adsorption
  • Artificial Neural Network
  • Genetic Algorithm