Skip to main content
Log in

A crossover quasi-chemical nonrandom lattice fluid model for pure carbon dioxide and hydrocarbons

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thequasi-chemical nonrandom lattice fluid model is capable of describing thermodynamic properties for complex systems containing associating fluids, polymer, biomolecules and surfactants, but this model fails to reproduce the singular behavior of fluids in the critical region. In this research, we used the quasi-chemical nonrandom lattice fluid model and combined this model with a crossover theory to obtain a crossover quasi-chemical nonrandom lattice fluid model which incorporated the critical scaling laws valid asymptotically close to the critical point and reduced to the original quasi-chemical nonrandom model far from the critical point. The crossover quasi-chemical nonrandom lattice fluid model showed a great improvement in prediction of the volumetric properties and second-order derivative properties near the critical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. H. Levelt-Sengers, Fluid Phase Equilib., 158–160, 3 (1999).

    Article  Google Scholar 

  2. I.C. Sanchez and R. H. Lacombe, J. Phys. Chem., 80, 2352 (1976).

    Article  CAS  Google Scholar 

  3. R.H. Lacombe and I. C. Sanchez, J. Phys. Chem., 80, 2368 (1976).

    Article  Google Scholar 

  4. M. S. Shin and H. Kim, Fluid Phase Equilib., 246, 79 (2006).

    Article  CAS  Google Scholar 

  5. M. S. Shin, K. P. Yoo, C. S. Lee and H. Kim, Korean J. Chem. Eng., 23, 469 (2006).

    Article  CAS  Google Scholar 

  6. M. S. Shin, K. P. Yoo, C. S. Lee and H. Kim, Korean J. Chem. Eng., 23, 476 (2006).

    Article  CAS  Google Scholar 

  7. K. Gauter and R. A. Heidemann, Ind. Eng. Chem. Res., 39, 1115 (2000).

    Article  CAS  Google Scholar 

  8. H. C. Burstyn and J.V. Sengers, Phys. Rev. Lett., 45, 259 (1980).

    Article  Google Scholar 

  9. J.V. Sengers and J. M. H. Levelt-Sengers, Ann. Rev. Phys. Chem., 37, 189 (1986).

    Article  CAS  Google Scholar 

  10. S.B. Kiselev and D.G. Friend, Fluid Phase Equilib., 162, 51 (1999).

    Article  CAS  Google Scholar 

  11. S. B. Kiselev and J. F. Ely, Fluid Phase Equilib., 174, 93 (2000).

    Article  CAS  Google Scholar 

  12. Y. Lee, M. S. Shin, J. K. Yeo and H. Kim, J. Chem. Thermodyn., 39, 1257 (2007).

    Article  CAS  Google Scholar 

  13. M. S. Shin, Y. Lee and H. Kim, J. Chem. Thermodyn., 40, 174 (2008).

    Article  CAS  Google Scholar 

  14. Y. Lee, M. S. Shin, B. Ha and H. Kim, J. Chem. Thermodyn., 40, 741 (2008).

    Article  CAS  Google Scholar 

  15. Y. Lee, M. S. Shin and H. Kim, J. Chem. Phys., 129, 203503 (2008).

    Google Scholar 

  16. S. S. You, K. P. Yoo and C. S. Lee, Fluid Phase Equilib., 93, 193 (1994).

    Article  CAS  Google Scholar 

  17. S. S. You, K. P. Yoo and C. S. Lee, Fluid Phase Equilib., 93, 215 (1994).

    Article  CAS  Google Scholar 

  18. M. S. Yeom, K. P. Yoo, B. H. Park and C. S. Lee, Fluid Phase Equilib., 158–160, 143 (1999).

    Article  Google Scholar 

  19. J.W. Kang, J. H. Lee, K. P. Yoo and C. S. Lee, Fluid Phase Equilib., 194–197, 77 (2002).

    Article  Google Scholar 

  20. M. S. Shin and H. Kim, Fluid Phase Equilib., 256, 27 (2007).

    Article  CAS  Google Scholar 

  21. M. S. Shin and H. Kim, J. Chem. Thermodyn., 40, 1110 (2008).

    Article  CAS  Google Scholar 

  22. S. Jang, M. S. Shin and H. Kim, Korean J. Chem. Eng., 26, 225 (2009).

    Article  CAS  Google Scholar 

  23. M. S. Shin, J. H. Lee and H. Kim, Fluid Phase Equilib., 272, 42 (2008).

    Article  CAS  Google Scholar 

  24. M. S. Shin and H. Kim, Fluid Phase Equilib., 270, 45 (2008).

    Article  CAS  Google Scholar 

  25. C. I. Park, M. S. Shin and H. Kim, J. Chem. Thermodyn., 41, 30 (2009).

    Article  CAS  Google Scholar 

  26. C. Panayiotou and J. H. Vera, Polymer J., 14, 681 (1982).

    Article  CAS  Google Scholar 

  27. S. K. Kumar, U.W. Suter and R.C. Reid, Ind. Eng. Chem. Res., 26, 2532 (1987).

    Article  CAS  Google Scholar 

  28. S. B. Kiselev and J. F. Ely, Fluid Phase Equilib., 119, 8645 (2003).

    CAS  Google Scholar 

  29. M. A. Anisimov, S. B. Kiselev, J.V. Sengers and S. Tang, Physica A., 188, 487 (1992).

    Article  Google Scholar 

  30. E.W. Lemmon, M. O. McLinden and D.G. Friend, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov (2001).

  31. J. Kang, K. Yoo, H. Kim, J. Lee, D. Yang and C. Lee, Int. J. Thermophys., 22, 487 (2001).

    Article  CAS  Google Scholar 

  32. M. A. Anisimov, V.G. Beketov, V. P. Voronov, V. B. Nagaev and V. A. Smimov, Teplofiz. Svoistva Veschestv Mater. (USSR), 16, 124 (1982).

    Google Scholar 

  33. I. M. Abdulagatov, S.B. Kiselev, L.N. Levina, Z.R. Zakaryaev and O. N. Mamchonkova, Int. J. Thermoyphys., 17, 423 (1996).

    Article  CAS  Google Scholar 

  34. I. M. Abdulagatov, N.G. Polikhronidi and R.G. Batyrova, J. Chem. Thermodyn., 26, 1031 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwayong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, M.S., Kim, S. & Kim, H. A crossover quasi-chemical nonrandom lattice fluid model for pure carbon dioxide and hydrocarbons. Korean J. Chem. Eng. 29, 404–412 (2012). https://doi.org/10.1007/s11814-011-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0182-6

Key words

Navigation