Skip to main content
Log in

Effect of hydraulic retention time and temperature on submerged membrane bioreactor (SMBR) performance

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Water shortages and strict environmental provisions necessitate wastewater renovation using various wastewater treatment methods, among which applications of submerged membrane bioreactors (SMBRs) are rapidly increasing due to their advantages such as high loading capacity and quality of effluent. In this work, the effect of hydraulic retention time (HRT 8, 10 and 12 h) and temperature (25, 30 and 35°C) on membrane fouling and sludge production was investigated in a 5-Liter SMBR equipped with immersed PVDF hollow fiber membrane module. Phenolic synthetic wastewater and acclimatized activated sludge with phenol during a 2-month period were used as toxic and microbial sources, respectively. Results showed that by increasing HRT membrane fouling decreases, while excellent treatment performance of over 99.5% phenol and 95% COD removals was achieved at all HRTs. Therefore, HRT=8 h corresponding to the highest effluent flow rate of 12 L/m2·h was used to investigate the effect of temperature, resulting in phenol and COD removals of higher than 99 and 96%, respectively, at all temperatures. Membrane fouling occurred at 12, 5 and 3 days for 25, 30 and 35 °C, respectively. Additionally, the effect of HRT and temperature on mixed liquor volatile suspended solid (MLVSS) as a measure of biomass was examined. MLVSS concentration showed decreases with increasing HRT and temperature. Overall, it was shown that SMBR can be used to efficiently treat phenolic wastewater at a range of flow rates and temperatures, among which HRT=8 h and T=25 °C are the preferred operating conditions, resulting in high flow rate and low membrane fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, Elsevier, Oxford (2006).

    Google Scholar 

  2. G. Traegardh and D. Johansson, Desalination, 119, 21 (1998).

    Article  Google Scholar 

  3. Y.-C. Juang, D.-J. Lee and J.-Y. Lai, J. Chin. Ins. Chem. Eng., 39, 657 (2008).

    Article  CAS  Google Scholar 

  4. S. Delgado, F. Díaz, R. Villarroel, L. Vera, R. Díaz and S. Elmaleh, Desalination, 146, 445 ( 2002).

    Google Scholar 

  5. H. S. Shin and S. T. Kang, Water Res., 37, 121 (2003).

    Article  CAS  Google Scholar 

  6. F. Zhang, Chem. Eng. Sci., 1, 2859 (2009).

    Google Scholar 

  7. A. F. Viero, G. L. Sant and A. Jr, J. Hazard. Mater., 150, 185 (2008).

    Article  CAS  Google Scholar 

  8. F. Meng and F. Yang, J. Membr. Sci., 305, 48 (2007).

    Article  CAS  Google Scholar 

  9. S. Zhang, F. Yang, Y. Liu, X. Zhang, Y. Yamad and K. Furukaw, Desalination, 194, 146 (2006).

    Article  CAS  Google Scholar 

  10. W. Lee, S. Kang and H. Shin, J. Membr. Sci., 216, 217 (2003).

    Article  CAS  Google Scholar 

  11. B. Jefferson, P. Le-Clech and S. J. Judd, J. Membr. Sci., 218, 117 (2003).

    Article  Google Scholar 

  12. F. Wicaksana, A. G. Fane and V. Chen, J. Membr. Sci., 271, 186 (2006).

    Article  CAS  Google Scholar 

  13. A. Al-Amri, M.R. Salim and A. Aris, Desalination, 259, 111 (2010).

    Article  CAS  Google Scholar 

  14. A. P. Le-Clech, B. S.B. Jefferson and B. J. Judd, Desalination, 173, 113 (2005).

    Article  CAS  Google Scholar 

  15. E. S. Tarleton and R. J. Wakeman, Chem. Eng. Res. Des., 71399–410 (1993).

  16. Laure Defrance, Michel Y. Ja€rin, Bharat Gupta, Patrick Paullier and Valery Geaugey, Bioresur. Technol., 105 (2000).

  17. W. Lee, S. K. Kang and H. S. Shin, J. Membr. Sci., 217 (2003).

  18. Y. Magara and M. Itoh, Water Sci. Technol., 23, 1583 (1991).

    CAS  Google Scholar 

  19. J. Lee, W.Y. Ahn and C. H. Lee, Water Res., 35(10), 2435 (2001).

    Article  Google Scholar 

  20. S. R. Chae and Y. Watanabe, J. Water Environ. Technol., 5, 45 (2007).

    Article  Google Scholar 

  21. S. P. Hong, T. H. Bae, T.M. Tak, S. Hongb and A. Randall, Desalination, 143, 219 (2002).

    Article  CAS  Google Scholar 

  22. S. R. Chae, Y. T. Ahn, S. T. Kang and H. S. Shin, J. Member. Sci., 280, 16 (2006).

    Article  Google Scholar 

  23. Zhi Huang, Say L. Ong and How Y. Ng, Water Res., 1 (2010).

  24. S. P. Hong, T. H. Bae, T.M. Tak, S. Hong and A. Randall, Desalination, 143, 219 (2002).

    Article  CAS  Google Scholar 

  25. O. Tardiff and E. R. Hall, Water Sci. Technol., 35, 57 (1997).

    Google Scholar 

  26. T. Huuhilo, J. Suvilampi, L. Puro, J. Rintala, M. Mänttäri, J. Nuortila, Jokinen and M. Nyström, Paper and Timber, 84, 50 (2002).

    CAS  Google Scholar 

  27. S. Ahn, S. Congeevaram, Y. K. Choung and J. Park, Desalination, 494 (2008).

  28. A. B. Martinez, E. Barbot, B. Marrot, P. Moulin and N. Roche, J. Membr. Sci., 288 (2006).

  29. M. Maghami, Membrane bioreactor design for synthetic wastewater treatment, Master of Science Thesis in Chemical Engineering, Iran University of Science and Technology (2010).

  30. American Public Health Association and American Water Works Association and Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 20th Ed., Washington DC (1998).

  31. A. E. Greenberg, R. R. Trussell and L. S. Clesceri, Standard methods for the examination of water and wastewater, 16th Ed., 556–567 (1985).

  32. N. P. Cheremisinoff, The Biochemical Book: Biotechnology for Water and Wastewater Treatment (2001).

  33. A. B. Martinez, E. Barbot, B. Marrot, P. Moulin and N. Roche, J. Membr. Sci., 281, 288 (2006).

    Article  Google Scholar 

  34. F. Meng, S.R. Chae, A. Drews, M. Kraume, H. S. Shin and F. Yang, Water Res., 1489 (2009).

  35. N. Ren, Z. Chen, A. Wanga and D. Hu, International Biodeterioration & Biodegradation, 55, 279 (2005).

    Article  CAS  Google Scholar 

  36. F. Kargi and I. Konya, J. Environ. Manage., 84, 20 (2007).

    Article  CAS  Google Scholar 

  37. K.G. Song, J. Cho and K. H Ahn, Bioprocess Biosystem Eng., 32, 135 (2009).

    Article  Google Scholar 

  38. Z. Wang, Z. Wu and S. Tang, Water Res., 43, 2504 (2009).

    Article  CAS  Google Scholar 

  39. Suvilampi and JAerobic, wastewater treatment under high and varying temperature-thermophilic process performance and effluent quality, Doctoral Thesis, University of Jyväskylä, 59 p (2003).

  40. A. B. Martinez, E. Barbot, B. Marrot, P. Moulin and N. Roche, J. Membr. Sci., 288 (2006).

  41. C.T. Joõ, P.R. Rachel, M. S. Cláudio and R. L. Valter, Process Biochem., 40, 1125 (2005).

    Article  Google Scholar 

  42. S. Ahn, S. Congeevaram, Y. K. Choung and J. Park, Desalination, 494 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toraj Mohammdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmati, A., Dolatabad, M.M., Naeimpoor, F. et al. Effect of hydraulic retention time and temperature on submerged membrane bioreactor (SMBR) performance. Korean J. Chem. Eng. 29, 369–376 (2012). https://doi.org/10.1007/s11814-011-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0180-8

Key words

Navigation