Abstract
Transition metal (Fe, V and W)-doped TiO2 was synthesized via the solvothermal technique and immobilized onto fiberglass cloth (FGC) for uses in photocatalytic decomposition of gaseous volatile organic compounds—benzene, toluene, ethylbenzene and xylene (BTEX)—under visible light. Results were compared to that of the standard commercial pure TiO2 (P25) coated FGC. All doped samples exhibit higher visible light catalytic activity than the pure TiO2. The V-doped sample shows the highest photocatalytic activity followed by the W- and Fe-doped samples. The UV-Vis diffuse reflectance spectra reveal that the V-doped sample has the highest visible light absorption followed by the W- and Fe-doped samples. The X-ray diffraction (XRD) patterns indicate that all doped samples contain both anatase and rutile phases with the majority (>80%) being anatase. No new peaks associated with dopant oxides can be observed, suggesting that the transition metal (TM) dopants are well mixed into the TiO2 lattice, or are below the detection limit of the XRD. The X-ray absorption near-edge structure spectra of the Ti K-edge transition indicate that most Ti ions are in a tetravalent state with octahedral coordination, but with increased lattice distortion from Fe- to V- and W-doped samples. Our results show that the TM-doped TiO2 were successfully synthesized and immobilized onto flexible fiberglass cloth suitable for treatment of gaseous organic pollutants under visible light.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
S. Wang, H.M. Ang and M. O. Tade, Environ. Int., 33, 694 (2007).
C. Collins, F. Laturnus and A. Nepovim, Environ. Sci. Pollut. Res. Int., 9, 86 (2002).
R. Thiruvenkatachari, S. Vigneswaran and I. S. Moon, Korean J. Chem. Eng., 25, 64 (2008).
B.-Y. Lee, S.-H. Park, S.-C. Lee, M. Kang, C.-H. Park and S.-J. Choung, Korean J. Chem. Eng., 20, 812 (2003).
T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Appl. Catal. A: Gen., 265, 115 (2004).
O. Carp, C. L. Huisman and A. Reller, Prog. Solid State Chem., 32, 33 (2004).
R. D. Shannon, Acta Crystallogr. A., 32, 751 (1976).
M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi and M. Matsuoke, Annu. Rev. Mater. Res., 35, 1 (2005).
C. H. Ao and S. C. Lee, Appl. Catal. B: Environ., 44, 191 (2003).
Y. Ku, C. Ma and Y. Shen, Appl. Catal. B: Environ., 34, 181 (2001).
Y. Dong, Z. Bai, R. Liu, X. Wang, H. Yan and T. Zhu, Environ. Technol., 27, 705 (2006).
Y. S. You, K.-H. Chung, J.-H. Kim and G. Seo, Korean J. Chem. Eng., 18, 924 (2001).
K. Wantala, L. Laokiat, P. Khemthong, N. Grisdanurak and K. Fukaya, J. Taiwan Inst. Chem. Eng., 41, 612 (2010).
P. Khemthong, W. Klysubun, S. Prayoonpokarach and J. Wittayakun, Mater. Chem. Phys., 121, 131 (2010).
B. Ravel and M. Newville, J. Synchrotron Rad., 12, 537 (2005).
F. Farges, Jr. G. E. Brown and J. J. Rehr, Phys. Rev. B., 56, 1809 (1997).
B. Ohtani, O. O. Prieto-Mahaney and D. L. R. Abe, J. Photochem. Photobiol. A., 216, 179 (2010).
C. Y. Wang, C. Bottcher, D.W. Bahnemann, J. K. Dohrmann, J. Mater. Chem., 13, 2322 (2003).
J. Choi, H. Park and M. R. Hoffmann, J. Phys. Chem. C., 114, 783 (2010).
A. Fujishima and X. Zhang, C.R. Chimie., 9, 750 (2006).
Z.Y. Wu, G. Ouvrard, P. Gressier and C. R. Natoli, Phys. Rev. B., 55, 10382 (1997).
J. Zhou, M. Takeuchi, A. K. Rayc, M. Anpo and X. S. Zhao, J. Colloid Interface Sci., 311, 497 (2007).
B. I. Lee, S. Kaewgun, W. Kim, W. Choi, J. S. Lee and E. Kim, J. Renewable Sustainable Energy, 1, 23101 (2009).
Y. Zhang, S. Wei, H. Zhang, S. Liu, F. Nawaz and F. S. Xiao, J. Colloid Interface Sci., 339, 434 (2009).
E. Kanchanatip, N. Grisdanurak, R. Thongruang and A. Neramittagapong, Reac. Kinet. Mech. Cat., 103, 227 (2011).
A. D. Paola, S. Ikeda, G. Marci, B. Ohtani and L. Palmisano, Int. J. Photoenergy, 3, 171 (2001).
National Institute of Standards and Technology Chemistry Web-Book (2010). http://webbook.nist.gov/chemistry/. Accessed 12 January 2011.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Laokiat, L., Khemthong, P., Grisdanurak, N. et al. Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth. Korean J. Chem. Eng. 29, 377–383 (2012). https://doi.org/10.1007/s11814-011-0179-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-011-0179-1