Skip to main content

Advertisement

Log in

The pinch technology combined with a heat pump applied in a three-effect evaporator and energy-saving performance assessment

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This research investigated optimal energy utilization with pinch technology based on an actual gelatin production factory using a three-effect evaporator (TEE). A TEE is a well-known device used extensively when concentrating process fluid with large amounts of boiler steam. Under ideal energy use conditions, the exhaust heat can be recovered with the addition of a heat pump system. The study results showed that the original energy demand and discharge of the TEE were 1,736.2 and 1,733.2 kWh, respectively. Simulating the pinch technology use, the energy demand and discharge decreased to 1,531.5 and 1,527.7 kWh, respectively. When the heat pump was used to recover the exhaust heat, 324 kL per annum of fuel oil was saved, while electricity use increased 131 kWh. The total investment cost was 86,550 US$, but the total annual operation cost could save up to 166,421 US$. The net present value was estimated to be 544,316 US$ with a 5-year equipment operation. The investment expense could be completely recovered within a seven-month remuneration period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Niesnfeld, Industrial evaporators, Instrument Society of America (1985).

  2. B. Linnhoff, D.W. Townsend, D. Boland, G. F. Hewitt, B. E. A. Thomas, A. R. Guy and R. H. Marsland, User guide on process integration for the efficient use of energy, 1st Ed., Institution of Chem. Eng., Rugby, UK (1982).

    Google Scholar 

  3. B. Linnhoff and E. Hindmarsh, Chem. Eng. Sci., 38, 745 (1983).

    Article  CAS  Google Scholar 

  4. B. Linnhoff and S. Ahmad, Comp. Chem. Eng., 147, 729 (1990).

    Article  Google Scholar 

  5. S. Ahmad, B. Linnhoff and R. Smith, Comp. Chem. Eng., 14, 751 (1990).

    Article  CAS  Google Scholar 

  6. H. P. Lee, I.Y. Lee and K. O. Yoo, Korean J. Chem. Eng., 12, 589 (1995).

    Article  CAS  Google Scholar 

  7. T. N. Tjoe and B. Linnhoff, Chem. Eng., 28, 47 (1986).

    Google Scholar 

  8. N. D. K. Asante and X.Y. Zhu, Comp. Chem. Eng., 20, S7 (1996).

    Article  CAS  Google Scholar 

  9. M.A. Phipps and A. F. A. Hoadley, Korean J. Chem. Eng., 20, 642 (2003).

    Article  CAS  Google Scholar 

  10. A. I. A. Salama, Appl. Therm. Eng., 29, 2633 (2009).

    Article  CAS  Google Scholar 

  11. T. Gundersen and L. Naess, Heat Recovery Systems & CHP, 10, 301 (1990).

    Article  CAS  Google Scholar 

  12. F. Staine and D. Favrat, Appl. Therm. Eng., 16, 497 (1996).

    Article  CAS  Google Scholar 

  13. R.M. Lazzarin, Heat Recovery System & CHP, 14, 581 (1994).

    Article  CAS  Google Scholar 

  14. R.M. Lazzarin, Heat Recovery System & CHP, 15, 305 (1995).

    Article  CAS  Google Scholar 

  15. Langley and C. Billy, Heat pump technology, 1st Ed., Prentice Hall, New Jersey, USA (2001).

    Google Scholar 

  16. I.C. Kemp, Pinch analysis and process integration, 2nd Ed., Elsevier Ltd, UK (2007).

    Google Scholar 

  17. T. D. Eastop and D. R. Croft, Energy efficiency, 1st Ed., Longman Group Ltd., Malaysia, KPP (1995).

    Google Scholar 

  18. Z. Fonyo and N. Benko, Comp. Chem. Eng., 20, S85 (1996).

    Article  CAS  Google Scholar 

  19. C. Wu, L. Chen and F. Sun, Energy Convers. Manage., 39, 445 (1998).

    Article  CAS  Google Scholar 

  20. J. M. Smith, H.C. Van Ness and M.M. Abbott, Introduction to chemical engineering thermodynamics, 7th Ed., McGraw-Hill, New York (2005).

    Google Scholar 

  21. A. Nguyen, Y. Kim and Y. Shin, Int. J. Refriger., 28, 242 (2005).

    Article  Google Scholar 

  22. K. J. Park, Y. Lee and D. Jung, J. Mechanical Sci. Technol., 24, 879 (2010).

    Article  Google Scholar 

  23. IEA, Heat Pump Centre, Heat pump performance, International Energy Agency (IEA) Heat Pump Centre, retrieved November 22, 2010 from: 〈http://www.heatpumpcentre.org〉.

  24. W. F. Stoecker and J.W. Jones, Refrigeration and air conditioning, 2nd Ed., McGraw-Hill, Taipei, Taiwan (1982).

    Google Scholar 

  25. C.M. Tan, Metal extraction in refrigerant R134a, Master’s Thesis, National Chiao Tung University, Hsinchu, Taiwan (2002).

    Google Scholar 

  26. M.Y. Lee, D.W. Choi and Y. H. Kim, Korean J. Chem. Eng., 26, 631 (2009).

    Article  CAS  Google Scholar 

  27. C. K. Yoo, T.Y. Lee, J. Kim, I. Moon, J. H. Jung, C. Han, J.M. Oh and I. B. Lee, Korean J. Chem. Eng., 24, 567 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Chien Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuan, CI., Yeh, YL., Hsu, LF. et al. The pinch technology combined with a heat pump applied in a three-effect evaporator and energy-saving performance assessment. Korean J. Chem. Eng. 29, 341–348 (2012). https://doi.org/10.1007/s11814-011-0173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0173-7

Key words

Navigation