Skip to main content

Advertisement

Log in

Destruction of anthracene using a gliding arc plasma reformer

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The gasification technology for biomass conversion has a limitation for some applications, including engines and turbines, because it produces tar-containing gas. In this study, a gliding arc plasma reformer was developed to remove tar. The plasma discharge in the gliding-type reformer is based on the both non-equilibrium and equilibrium plasmas. A simulation test was conducted using anthracene, which is produced during the gasification of biomass and waste, as the representative tar substance. In the optimal condition, the anthracene decomposition efficiency was 96.1%, and the energy efficiency was 1.14 g/kWh. The higher heating value of the gas produced from the anthracene decomposition was 11,324 kJ/Nm3, and the carbon balance was 98%. The steam flow rate, power input, total gas flow rate, and input concentration change were used as variables for the test. The anthracene decomposition efficiency was 81% when the gliding arc plasma reformer was used. When steam was fed at a rate of 0.63 L/min, the decomposition efficiency was highest (96.1%) due to the creation of OH radicals. The energy efficiency was highest (2.63 g/kWh) when the total gas flow rate was 24.1 L/min. H2, CO, and CO2 were produced as reformed gases. At the steam injection rate of 0.37 L/min or more, carbon black did not appear. Thus, it was verified that the gliding arc plasma reformer is effective for tar reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rauch, H. H. K. Bosch and I. Siefert, In second world conference and technology exhibition on biomass for energy and industry, Florence, Italy, 1687 (2004).

  2. H. Sutcu, Korean J. Chem. Eng., 24, 736 (2007).

    Article  CAS  Google Scholar 

  3. K. Sato and K. Fujimoto, Catal. Commun., 8, 1697 (2007).

    Article  CAS  Google Scholar 

  4. L. Devi, K. J. Ptasinski and J. J.G. Janssen, Ind. Eng. Chem. Res., 44, 9096 (2005).

    Article  CAS  Google Scholar 

  5. L. Devi, K. Ptasinski, F. Janssen, S. van Paasen, P. Bergman and J. Kiel, Renew. Energy, 30, 565 (2005).

    Article  CAS  Google Scholar 

  6. K. Zhang, H. T. Li, Z. S. Wu and T. Mi, 2009 International conference on energy and environment technology, Guilin, China, 655 (2009).

  7. L. Fagbemi, L. Khezami and R. Capart, Appl. Energy, 69, 293 (2001).

    Article  CAS  Google Scholar 

  8. D. Dayton, National renewable energy laboratory, NREL/TP-510-32815, 1 (2002).

  9. J. Fjellerup, J. Ahrenfeldt, U. Heriksen and B.G. Gobel, Biomass gasification group, DTU. MEK-ET-2005-05 (2005).

  10. C. Li, D. Hirabayashi and K. Suzuki, Fuel Process. Technol., 90, 790 (2009).

    Article  CAS  Google Scholar 

  11. A. J.M. Pemen, S. A. Nair, E. J. M. Van Heesch, K. J. Ptasinski and A. A. H. Drinkenburg, Plasma Sci., 8, 209 (2003).

    Google Scholar 

  12. L. Yu, X. Li, T. Xin, W. Yu, L. Shengyong and Y. Jinahua. J. Phys. Chem. A., 114, 360 (2009).

    Article  Google Scholar 

  13. T. Phuphuakrat, T. Namioka and K. Yoshikawa, Appl. Energy, 87, 2203 (2010).

    Article  CAS  Google Scholar 

  14. A. Czernichowski, European Roadmap of Process Intensification, 3.3.5.1, 18 (2007).

    Google Scholar 

  15. A. Czernichowski, M. Czernichowski and K. Wesolowska, HYPOTHESIS V, Porto Conte, Italy, September (2003).

  16. L. Lin, B. Wu, C. Yang and C. Wu, Plasma Sci. Technol., 8, 653 (2006).

    Article  Google Scholar 

  17. A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev and O. Mutaf-Yardimci, Prog. Energy Combust. Sci., 25, 211 (1999).

    Article  CAS  Google Scholar 

  18. D. L. Streiner, Can. J. Psychiatry, 41, 498 (1996).

    CAS  Google Scholar 

  19. N. Tippayawong and P. Inthasan, Int. J. Chem. React. Eng., 8, 1 (2010).

    Google Scholar 

  20. C. M. Du, J. H. Yan and B. Cheron, Plasma Sources Sci. Technol., 16, 791 (2007).

    Article  CAS  Google Scholar 

  21. C. M. Du, J. H. Yan, X. D. Li, B.G. Cheron, X. F. You, Y. Chi, M. J. Ni and K. F. Cen, Plasma Chem. Plasma Process., 26, 517 (2006).

    Article  Google Scholar 

  22. Y. N. Chun, Y. C. Yang and K. Yosikawa, Catal. Today, 148, 283 (2009).

    Article  CAS  Google Scholar 

  23. T. Sreethawong, P. Thakonpatthanakun and S. Chavadej, Int. J. Hydrog. Energy, 32, 1067 (2007).

    Article  CAS  Google Scholar 

  24. Z. Bo, J. Yan, X. Li, Y. Chi and Kefa Cen, J. Hazard. Mater., 155, 494 (2008).

    Article  CAS  Google Scholar 

  25. B. Zhang, S. Xiong, B. Xiao, D. Yu and X. Jia, Int. J. Hydrog. Energy, 36, 355 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Nam Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, Y.N., Kim, S.C. & Yoshikawa, K. Destruction of anthracene using a gliding arc plasma reformer. Korean J. Chem. Eng. 28, 1713–1720 (2011). https://doi.org/10.1007/s11814-011-0162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0162-x

Key words

Navigation