Skip to main content
Log in

Oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane after surface modification

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of minor surface modification on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane was evaluated in the temperature region from 700 to 850 °C. Oxygen permeation experiments were conducted according to membrane thickness (1.0mm and 1.6 mm) and oxygen partial pressure (0.21, 0.42, and 0.63 atm) in the absence and in the presence of carbon dioxide (300 and 500 ppm). The oxygen permeation flux of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane increased with increasing temperature and decreasing membrane thickness. The oxygen permeation flux through the membrane of 1.0 mm thickness with Ba0.5Sr0.5Co0.8Fe0.2O3−δ -modified surface was ca. 1.23 ml/cm2·min at 850 °C under air feeding condition. It was found that the Ba0.5Sr0.5Co0.8Fe0.2O3−δ -modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane has better oxygen permeation flux than the pristine Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane. In summary, it has been demonstrated that the surface morphology is an important factor in determining the oxygen permeation fluxes through Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane under mixed-control conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. H. Steel, Mater. Sci. Eng., B, 13, 79 (1992).

    Article  Google Scholar 

  2. S.-T. Hwang, Korean J. Chem. Eng., 18, 775 (2001).

    Article  CAS  Google Scholar 

  3. Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong and G. Xiong, J. Membr. Sci., 172, 177 (2000).

    Article  CAS  Google Scholar 

  4. H. Wang, Y. Cong and W. Yang, J. Membr. Sci., 210, 259 (2002).

    Article  CAS  Google Scholar 

  5. H. Wang, R. Wang, D. T. Liang and W. Yang, J. Membr. Sci., 243, 405 (2004).

    Article  CAS  Google Scholar 

  6. S. B. Adler, Chem. Rev., 104, 4791 (2004).

    Article  CAS  Google Scholar 

  7. Z. Shao and S. M. Haile, Nature, 431, 170 (2004).

    Article  CAS  Google Scholar 

  8. E. Magnone, J. Fuel Cell Sci. Technol., 7, 064001 (2010).

    Article  Google Scholar 

  9. L. Ge, W. Zhou, R. Ran, S. Liu, Z. Shao, W. Jin and N. Xu, J. Membr. Sci., 306, 318 (2007).

    Article  CAS  Google Scholar 

  10. J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y. S. Lin and J. C. Diniz da Costa, J. Membr. Sci., 320, 13 (2008).

    Article  CAS  Google Scholar 

  11. R.Y. Moydinov, M. N. Popova and A. R. Kaul, Doklady Chemistry, 402, 88 (2005).

    Article  Google Scholar 

  12. H. J.M. Bouwmeester, H. Kruidhof and A. J. Burggraaf, Solid State Ionics, 72, 185 (1994).

    Article  CAS  Google Scholar 

  13. C. Ftikos, S. Carter and B. C. H. Steele, J. Eur. Ceram. Soc., 12, 79 (1993).

    Article  CAS  Google Scholar 

  14. E. Bucher, A. Egger, P. Ried, W. Sitte and P. Holtappels, Solid State Ionics, 179, 1032 (2008).

    Article  CAS  Google Scholar 

  15. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J.A. Kilner and B. C.H. Steele, Solid State Ionics, 53–56, 597 (1992).

    Article  Google Scholar 

  16. E. Girdauskaite, H. Ullmann, V.V. Vashook, U. Guth, G. B. Caraman, E. Bucher and W. Sitte, Solid State Ionics, 179, 385 (2008).

    Article  CAS  Google Scholar 

  17. A. Ghadimi, M. A. Alaee, A. Behrouzifar, A.A. Asadi and T. Mohammadi, Desalination, DOI:10.1016/j.desal.2010.11.022 (2010).

  18. W. K. Hong and G.M. Choi, J. Membr. Sci., 346, 353 (2010).

    Article  CAS  Google Scholar 

  19. Z. Chen, R. Ran, Z. Shao, H. Yu, J. C. Diniz da Costa and S. Liu, Ceram. Int., 35, 2455 (2009).

    Article  CAS  Google Scholar 

  20. Q. Jiang, K. J. Nordheden and S. M. Stagg-Williams, J. Membr. Sci., DOI:10.1016/j.memsci.2010.11.073 (2010).

  21. J. H. Park, J. P. Kim and S. H. Son, Greenhouse Gas Control Technologies 9, Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), 16–20 November 2008, Washington DC, USA, Energy Procedia, 1, 369 (2009).

    Article  CAS  Google Scholar 

  22. E. Magnone, M. Miyayama and E. Traversa, J. Electrochem. Soc., 156, B1059 (2009).

    Article  CAS  Google Scholar 

  23. H. Lu, Y. Cong and W. S. Yang, Solid State Ionics, 177, 595 (2006).

    Article  CAS  Google Scholar 

  24. Z. Shen, P. Lu, G. Yan and X. Hu, Mater. Lett., 64, 980 (2010).

    Article  CAS  Google Scholar 

  25. P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao and S. Liu, J. Membr. Sci., 291, 148 (2007).

    Article  CAS  Google Scholar 

  26. S. Engels, F. Beggel, M. Modigell and H. Stadler, J. Membr. Sci., 359, 93 (2010).

    Article  CAS  Google Scholar 

  27. Z. Yáng, A. S. Harvey and L. J. Gauckler, Scr. Mater., 61, 1083 (2009).

    Article  Google Scholar 

  28. K. Nomura, Z. Homonnay, G. Juhasz, A. Vertes, H. Donen and T.T. s. Sawada, Hyperfine Interact., 139–140, 297 (2002).

    Article  Google Scholar 

  29. Q. Yang and Y. S. Lin, Ind. Eng. Chem. Res., 45, 6302 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Magnone, E., Kim, J.P. et al. Oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane after surface modification. Korean J. Chem. Eng. 29, 235–242 (2012). https://doi.org/10.1007/s11814-011-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0153-y

Key words

Navigation