Korean Journal of Chemical Engineering

, Volume 29, Issue 1, pp 64–71 | Cite as

Biosorption of chromium onto Erythrina Variegata Orientalis leaf powder

  • Gannavarapu Venkata Vamsi Aditya
  • Bhagavatula Padma Pujitha
  • Nalluri Chitti Babu
  • Paladugu Venkateswarlu
Environmental Engineering

Abstract

The biosorption of chromium from an aqueous solution onto Erythrina Variegata Orientalis leaf powder was investigated in batch operations. The equilibrium agitation time was 180 min. The extent of chromium biosorption increased from 74.2% to 86.4% with decrease in biosorbent size from 150 to 45 μm for a dosage of 30 g/L. The biosorption decreased from 99.1 (0.45 mg/g) to 45.5% (1.64 mg/g) with an increase in chromium initial concentration (Co) from 22.5 to 180 mg/L. The extent of biosorption was maximum at pH=3. The experimental data were well explained by Langmuir and Redlich-Peterson isotherm models. The biosorption data followed second-order kinetics with a rate constant of 0.078 g/mg-min for 50 g/L of 45 μm size biosorbent. The biosorption was exothermic and feasible. The biosorption was tending towards irreversibility with increasing temperature.

Key words

Chromium Biosorption Erythrina Thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.C. Son, K.M. Park, S. H. Song and Y. J. Yoo, Korean J. Chem. Eng., 21(6), 1168 (2004).CrossRefGoogle Scholar
  2. 2.
    K. Srinivasa Rao, Shashi Anand and P. Venkateswarlu, Korean J. Chem. Eng., 27(5), 1547 (2010).CrossRefGoogle Scholar
  3. 3.
    Web site of Central Pollution Control Board: www.cpcb.nic.in.
  4. 4.
    E. A. Oliveira, S. F. Montanher, A. D. Andrade, J. A. Nobrega and M. C. Rollemberg, Process Biochem., 40, 3485 (2005).CrossRefGoogle Scholar
  5. 5.
    A. Baran, E. B cak, S. H. Baysal and S. Onal, Bioresour. Technol., 98, 661 (2006).CrossRefGoogle Scholar
  6. 6.
    H. Barrera, F. Urena-Nunez, B. Bilyeu and C. Barrera-Diaz, J. Hazard. Mater., B136, 846 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Ilhan, M. Nurbas, S. Nourbakhsh, Kilicarslan and H. Ozdag, Turkish Electron. J. Biotechnol., 2, 50 (2004).Google Scholar
  8. 8.
    M. F. Sawalha, J. L. Gardea-Torredey, J.G. Parsons, G. Saupe and J. R. Peralta-Videa, Microchem. J., 81, 122 (2005).CrossRefGoogle Scholar
  9. 9.
    G. Ozdemir, N. Ceyhan, T. Ozturk, F. Akirmak and T. Cosar, Chem. Eng. J., 102, 249 (2004).CrossRefGoogle Scholar
  10. 10.
    P. Suksabye, P. Thiravetyan, W. Nakbanpote and S. Chayabutra, J. Hazard. Mater., 141(3), 637 (2007).CrossRefGoogle Scholar
  11. 11.
    F.N. Acar and E. Malkoc, Bioresour. Technol., 94, 13 (2004).CrossRefGoogle Scholar
  12. 12.
    G. Donmez and Z. Aksu, Process Biochem., 38, 751 (2002).CrossRefGoogle Scholar
  13. 13.
    S. Gupta and B.V. Babu, Adsorption of chromium (VI) by a lowcost adsorbent prepared from tamarind seeds, Paper presented at CHEMCON-2006, India.Google Scholar
  14. 14.
    M. X. Loukidou, A. I. Zouboulis, T. D. Karapantsios and K. A. Matis, Colloids and Surfaces, A: Physicochem. Eng. Aspects, 242, 93 (2004).CrossRefGoogle Scholar
  15. 15.
    P. Rohinikumar, M. Venkateswara Rao, N. Chittibabu, P.V. Ravikumar and P. Venkateswarlu, Ind. J. Chem. Technol., 16, 308 (2009).Google Scholar
  16. 16.
    V. K. Garg, R. K. Gupta and R. K. Gupta, Bioresour. Technol., 92, 79 (2004).CrossRefGoogle Scholar
  17. 17.
    V. Sarin and K. K. Pant, Bioresour. Technol., 97, 5 (2006).Google Scholar
  18. 18.
    E. Malkoc, Y. Nuhoglu and M. Dundar, J. Hazard. Mater., B138, 142 (2006).CrossRefGoogle Scholar
  19. 19.
    S. S. Barala, S. N. Das, P. Rath and G. R. Choudary, Biochem. Eng. J., 34, 69 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Tunali, I. Kiran and T. Akar, Miner. Eng., 18, 681 (2005).CrossRefGoogle Scholar
  21. 21.
    K.G. Bhattacharya and A. Sharma, J. Hazard. Mater., B113, 97 (2004).CrossRefGoogle Scholar
  22. 22.
    G. Xing, S. Zhang, B. Ju and J. Yang, Carbohydr. Polym., 66, 246 (2006).CrossRefGoogle Scholar
  23. 23.
    N. K. Lazaridis and Ch. Charalambous, Water Res., 39, 4385 (2005).CrossRefGoogle Scholar
  24. 24.
    H. Freundlich, Z. Phys. Chem., 57, 387 (1906).Google Scholar
  25. 25.
    L. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).CrossRefGoogle Scholar
  26. 26.
    O. Redlich and D. L. Peterson, J. Phys. Chem., 63, 1024 (1959).CrossRefGoogle Scholar
  27. 27.
    S. Lagergren, K. Sven. Vetenskapsakad. Handl, 24, 1 (1898).Google Scholar
  28. 28.
    B. Kiran, A. Kaushik and C. P. Kaushik, J. Hazard. Mater., 141(3), 662 (2006).CrossRefGoogle Scholar
  29. 29.
    A. Sharma and G. Bhattacharya, J. Hazard. Mater., B125, 102 (2005).CrossRefGoogle Scholar
  30. 30.
    M. Erdem, H. S. Altundogan and F. Taumen, Miner. Eng., 17, 1045 (2004).CrossRefGoogle Scholar
  31. 31.
    E. Sabah, M. Turan and M. S. Celik, Sep. Sci. Technol., 37, 3081 (2005).CrossRefGoogle Scholar
  32. 32.
    M. Kara, H. Yuzer, E. Sabah and M. S. Celik, Water Res., 37, 224 (2003).CrossRefGoogle Scholar
  33. 33.
    T. Karthikeyan, S. Rajagopal and L. R. Mireanda, J. Hazard. Mater., 124(1–3), 192 (2005).CrossRefGoogle Scholar
  34. 34.
    S. S. Baral, S. N. Das and P. Rath, Biochem. Eng. J., 34, 69 (2007).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2011

Authors and Affiliations

  • Gannavarapu Venkata Vamsi Aditya
    • 1
  • Bhagavatula Padma Pujitha
    • 1
  • Nalluri Chitti Babu
    • 1
  • Paladugu Venkateswarlu
    • 2
  1. 1.Department of Chemical EngineeringAndhra UniversityVisakhapatnamIndia
  2. 2.PVP Siddhartha Institute of TechnologyVijayawadaIndia

Personalised recommendations