Skip to main content
Log in

Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The current study focuses on the electrospinning of chitosan (CHT)/multi walled carbon nanotubes (MWNTs) composite nanofiber using a highly stable dispersion. The acetic acid (1–100%) and trifluoroacetic acid/dichloromethane (TFA/DCM 70: 30) was tested as solvent, and the TFA/DCM (70 : 30) is most preferred for fiber formation process with acceptable electrospinnability. Moreover, a new protocol was used to establish proper technique for preparation of electrospinning solution. FT-IR spectroscopy utilized to infer the extent of interaction between CHT polymer chain and MWNT filaments. A quite simple technique was employed to show the stability of electrospinning solution before nanofiber formation process. Scanning electronic microscope (SEM) was employed to show the influence of spinning parameters on surface morphology of electrospun fiber. Under optimized condition, homogeneous and beadfree CHT/MWNTs nanofibers and known physical characteristics were prepared. The formation of conducting nanofibers based on CHT nanocomposites can be considered as a significant improvement in electrospinning of CHT/CNT dispersion. The direct outcome of the current study includes the homogeneous CHT/MWNTs nanofibers with an average diameter of 275 nm and a conductivity of 9×10−5 S/cm. These results are extremely important for further investigation regarding biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agarwal, J. H. Wendorff and A. Greiner, Polymer, 49, 5603 (2008).

    Article  CAS  Google Scholar 

  2. M. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss and P. I. Lelkes, Biomaterials, 26, 5999 (2005).

    Article  CAS  Google Scholar 

  3. J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, X. Xu, X. Chen and X. Jing, J. Control. Release, 105, 43 (2005).

    Article  CAS  Google Scholar 

  4. M.-S. Khil, D.-I. Cha, H.-Y. Kim, I.-S. Kim and N. Bhattarai, J. Biomed. Mat. Res. B., 67B, 675 (2003).

    Article  CAS  Google Scholar 

  5. G. I. Taylor, Proc. Roy. Soc. London, 313, 453 (1969).

    Article  Google Scholar 

  6. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).

    Article  CAS  Google Scholar 

  7. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  8. M. Ziabari, V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 25, 923 (2008).

    Article  CAS  Google Scholar 

  9. S. H. Tan, R. Inai, M. Kotaki and S. Ramakrishna, Polymer, 46, 6128 (2005).

    Article  CAS  Google Scholar 

  10. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus and F. Ko, Polymer, 44, 5721 (2003).

    Article  CAS  Google Scholar 

  11. J. A. Matthews, G. E. Wnek, D. G. Simpson and G. L. Bowlin, Biomacromolecules, 3, 232 (2002).

    Article  CAS  Google Scholar 

  12. M. C. McManus, E. D. Boland, D. G. Simpson, C. P. Barnes and G. L. Bowlin, J. Biomed. Mater. Res. A., 81A, 299 (2007).

    Article  CAS  Google Scholar 

  13. Z.-M. Huang, Y. Z. Zhang, S. Ramakrishna and C. T. Lim, Polymer, 45, 5361 (2004).

    Article  CAS  Google Scholar 

  14. X. Zhang, M. R. Reagan and D. L. Kaplan, Adv. Drug. Del. Rev., 61, 988 (2009).

    Article  CAS  Google Scholar 

  15. H. K. Noh, S.W. Lee, J.-M. Kim, J.-E. Oh, K.-H. Kim, C.-P. Chung, S.-C. Choi, W. H. Park and B.-M. Min, Biomaterials, 27, 3934 (2006).

    Article  CAS  Google Scholar 

  16. K. Ohkawa, K.-I. Minato, G. Kumagai, S. Hayashi and H. Yamamoto, Biomacromolecules, 7, 3291 (2006).

    Article  CAS  Google Scholar 

  17. O. C. Agboh and Y. Qin, Polym. Adv. Technol., 8, 355 (1997).

    Article  CAS  Google Scholar 

  18. M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006).

    Article  CAS  Google Scholar 

  19. I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed and Á. Heras, Curr. Chem. Biol., 3, 203 (2009).

    Article  CAS  Google Scholar 

  20. A. Neamnark, R. Rujiravanit and P. Supaphol, Carbohydr. Polym., 66, 298 (2006).

    Article  CAS  Google Scholar 

  21. B. Duan, C. Dong, X. Yuan and K. Yao, J. Biomater. Sci. Polym. Ed., 15, 797 (2004).

    Article  CAS  Google Scholar 

  22. Y.-T. Jia, J. Gong, X.-H. Gu, H.-Y. Kim, J. Dong and X.-Y. Shen, Carbohydr. Polym., 67, 403 (2007).

    Article  CAS  Google Scholar 

  23. H. Homayoni, S. A. H. Ravandi and M. Valizadeh, Carbohydr. Polym., 77, 656 (2009).

    Article  CAS  Google Scholar 

  24. X. Geng, O.-H. Kwon and J. Jang, Biomaterials, 26, 5427 (2005).

    Article  CAS  Google Scholar 

  25. S. Torres-Giner, M. J. Ocio and J. M. Lagaron, Anglais, 8, 303 (2008).

    CAS  Google Scholar 

  26. S. D. Vrieze, P. Westbroek, T. V. Camp and L. V. Langenhove, J. Mater. Sci., 42, 8029 (2007).

    Article  CAS  Google Scholar 

  27. K. Ohkawa, D. Cha, H. Kim, A. Nishida and H. Yamamoto, Macromol. Rapid Commun., 25, 1600 (2004).

    Article  CAS  Google Scholar 

  28. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  29. A. M. K. Esawi and M. M. Farag, Mater. Design, 28, 2394 (2007).

    Article  CAS  Google Scholar 

  30. W. Feng, Z. Wu, Y. Li, Y. Feng and X. Yuan, Nanotechnology, 19, 105707 (2008).

    Article  Google Scholar 

  31. H. Liao, R. Qi, M. Shen, X. Cao, R. Guo, Y. Zhang and X. Shi, Colloid. Surface. B., doi:10.1016/j.colsurfb.2011.02.010 (2011).

  32. S.-H. Baek, B. Kim and K.-D. Suh, Colloid. Surface. A., 316, 292 (2008).

    Article  CAS  Google Scholar 

  33. Y.-L. Liu, W.-H. Chen and Y.-H. Chang, Carbohydr. Polym., 76, 232 (2009).

    Article  CAS  Google Scholar 

  34. J. Tkac, J.W. Whittaker and T. Ruzgas, Biosens. Bioelectron., 22, 1820 (2007).

    Article  CAS  Google Scholar 

  35. G. M. Spinks, M. Geoffrey, S. R. Shin, G.G. Wallace, P.G. Whitten, S. I. Kim and S. J. Kim, Sensor. Actuat. B-Chem., 115, 678 (2006).

    Article  Google Scholar 

  36. H. Zhang, Z. Wang, Z. Zhang, J. Wu, J. Zhang and J. He, Adv. Mater., 19, 698 (2007).

    Article  CAS  Google Scholar 

  37. J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. Beck Tan, Polymer, 42, 261 (2001).

    Article  CAS  Google Scholar 

  38. S. Zhang, W. S. Shim and J. Kim, Mater. Design, 30, 3659 (2009).

    Article  CAS  Google Scholar 

  39. Y. Li, Z. Huang and Y. Lu, Eur. Polym. J., 42, 1696 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Khodaparast Haghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdieh, Z.M., Mottaghitalab, V., Piri, N. et al. Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility. Korean J. Chem. Eng. 29, 111–119 (2012). https://doi.org/10.1007/s11814-011-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0129-y

Key words

Navigation