Skip to main content

Advertisement

Log in

Chemical-looping combustion of syngas by means of spray-dried NiO oxygen carrier

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chemical-looping combustion (CLC) of syngas has a potential to generate power economically with achieving the inherent carbon dioxide capture. An oxygen carrier with high reactivity and excellent physical properties would make CLC technology more competitive. In this work, oxygen carrier with 70 wt% NiO was prepared by spray drying technique. The prepared oxygen carrier had excellent physical properties for fluidized-bed application of CLC process. The reactivity of the oxygen carrier in repeated reduction-oxidation was measured by thermogravimetric analyzer with simulated syngas. Oxygen carrier calcined at 1,100 °C showed high oxygen transfer capacity of 14.7 wt%, utilizing 98% of the transferable oxygen. Oxygen transfer capacity and oxygen transfer rate was increased with the increase of reaction temperature, and the highest oxygen transfer rate was observed when about half of the transferable oxygen reacted with syngas. The reduction rate of the syngas (mixture of H2 and CO) appeared to be approximately the sum of the reaction rate of each fuel gas. The experimental results indicated that the spray-dried NiO oxygen carrier prepared in this work could be a good quality oxygen carrier for the CLC of syngas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Energy Agency (IEA), World Energy Outlook 2008, IEA Publications, Paris (2008).

    Book  Google Scholar 

  2. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R.D. Srivastava, Int. J. Greenhouse Gas Control, 2, 9 (2008).

    Article  CAS  Google Scholar 

  3. H. Leion, T. Mattisson and A. Lyngfelt, Int. J. Greenhouse Gas Control, 2, 180 (2008).

    Article  CAS  Google Scholar 

  4. A. Rubel, K. Liu, J. Neathery and D. Taulbee,Fuel, 88, 876 (2009).

    Article  CAS  Google Scholar 

  5. L. Shen, J. Wu and J. Xiao, Combust. Flame, 156, 721 (2009).

    Article  CAS  Google Scholar 

  6. K. E. Sedor, M.M. Hossain and H. I. de Lasa, Chem. Eng. Sci., 63, 2994 (2008).

    Article  CAS  Google Scholar 

  7. B.M. Corbella, L. F. de Diego, F. Garcia-Labiano, J. Adanez and J.M. Palacios, Ind. Eng. Chem. Res., 45, 157 (2006).

    Article  CAS  Google Scholar 

  8. P. Gayan, L. F. de Diego, F. Garcia-Labiano, J. Adanez, A. Abad and C. Dueso, Fuel, 87, 2641 (2008).

    Article  CAS  Google Scholar 

  9. H.-J. Ryu, D.-H. Bae, K.-H. Han, S.-Y. Lee, K.-T. Jin and J.-H. Choi, Korean J. Chem. Eng., 18, 831 (2001).

    Article  CAS  Google Scholar 

  10. R. Siriwardane, J. Poston, K. Chaudhari, A. Zinn, T. Simonyi and C. Robinson, Energy Fuels, 21, 1582 (2007).

    Article  CAS  Google Scholar 

  11. M. Johansson, T. Mattison and A. Lyngfelt, Chemical Engineering Research Design, 84, 807 (2006).

    Article  CAS  Google Scholar 

  12. T. Mattisson, M. Johansson and A. Lyngfelt, Fuel, 85, 736 (2006).

    Article  CAS  Google Scholar 

  13. E. Jerndal, T. Mattisson, I. Thijs, F. Snijkers and A. Lyngfelt, Energy Procedia, 1, 479 (2009).

    Article  CAS  Google Scholar 

  14. T. Mattisson, E. Jerndal, J. Adánez, T. Proell, R. Kuusik, C. Beal, J. Assink, F. Snijkers and A. Lyngfelt, Energy Procedia, 1, 1557 (2009).

    Article  CAS  Google Scholar 

  15. C. Linderholm, T. Mattisson and A. Lyngfelt, Fuel, 88, 2083 (2009).

    Article  CAS  Google Scholar 

  16. A. Shulman, C. Linderholm, T. Mattisson and A. Lyngfelt, Ind. Eng. Chem. Res., 48, 7400 (2009).

    Article  CAS  Google Scholar 

  17. M. Ishida, M. Yamamoto and T. Ohba, Energy Convers. Manage., 43, 1469 (2002).

    Article  CAS  Google Scholar 

  18. R. P. Gupta, S. K. Gangwal and S. C. Jain, US Patent, 5,254,516 (1993).

  19. R. P. Gupta and S. K. Gangwal, Enhanced durability of desulfurization sorbents for fluidized-bed applications, DOE/NETL Report DOE/MC/25006-3011, U.S.A. (1991).

    Google Scholar 

  20. J.-I. Baek, C. K. Ryu, J. Ryu, J.-W. Kim, T. H. Eom, J.B. Lee and J. Yi, Energy Fuels, 24, 5757 (2010).

    Article  CAS  Google Scholar 

  21. H.-J. Ryu, N.-Y. Lim, D.-H. Bae and G.-T. Jin, Korean J. Chem. Eng., 20, 157 (2003).

    Article  CAS  Google Scholar 

  22. H.-J. Ryu, D.-H. Bae and G.-T. Jin, Korean J. Chem. Eng., 20, 960 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongheop Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, JI., Ryu, C.K., Eom, T.H. et al. Chemical-looping combustion of syngas by means of spray-dried NiO oxygen carrier. Korean J. Chem. Eng. 28, 2211–2217 (2011). https://doi.org/10.1007/s11814-011-0079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0079-4

Key words

Navigation